27 research outputs found

    Characterisation and application of a bovine U6 promoter for expression of short hairpin RNAs

    Get PDF
    BackgroundThe use of small interfering RNA (siRNA) molecules in animals to achieve double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful method of sequence-specific gene knockdown. As DNA-based expression of short hairpin RNA (shRNA) for RNAi may offer some advantages over chemical and in vitro synthesised siRNA, a number of vectors for expression of shRNA have been developed. These often feature polymerase III (pol. III) promoters of either mouse or human origin.ResultsTo develop a shRNA expression vector specifically for bovine RNAi applications, we identified and characterised a novel bovine U6 small nuclear RNA (snRNA) promoter from bovine sequence data. This promoter is the putative bovine homologue of the human U6-8 snRNA promoter, and features a number of functional sequence elements that are characteristic of these types of pol. III promoters. A PCR based cloning strategy was used to incorporate this promoter sequence into plasmid vectors along with shRNA sequences for RNAi. The promoter was then used to express shRNAs, which resulted in the efficient knockdown of an exogenous reporter gene and an endogenous bovine gene.ConclusionWe have mined data from the bovine genome sequencing project to identify a functional bovine U6 promoter and used the promoter sequence to construct a shRNA expression vector. The use of this native bovine promoter in shRNA expression is an important component of our future development of RNAi therapeutic and transgenic applications in bovine species.<br /

    A direct comparison of strategies for combinatorial RNA interference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combinatorial RNA interference (co-RNAi) is a valuable tool for highly effective gene suppression of single and multiple-genes targets, and can be used to prevent the escape of mutation-prone transcripts. There are currently three main approaches used to achieve co-RNAi in animal cells; multiple promoter/shRNA cassettes, long hairpin RNAs (lhRNA) and miRNA-embedded shRNAs, however, the relative effectiveness of each is not known. The current study directly compares the ability of each co-RNAi method to deliver pre-validated siRNA molecules to the same gene targets.</p> <p>Results</p> <p>Double-shRNA expression vectors were generated for each co-RNAi platform and their ability to suppress both single and double-gene reporter targets were compared. The most reliable and effective gene silencing was achieved from the multiple promoter/shRNA approach, as this method induced additive suppression of single-gene targets and equally effective knockdown of double-gene targets. Although both lhRNA and microRNA-embedded strategies provided efficient gene knockdown, suppression levels were inconsistent and activity varied greatly for different siRNAs tested. Furthermore, it appeared that not only the position of siRNAs within these multi-shRNA constructs impacted upon silencing activity, but also local properties of each individual molecule. In addition, it was also found that the insertion of up to five promoter/shRNA cassettes into a single construct did not negatively affect the efficacy of each individual shRNA.</p> <p>Conclusions</p> <p>By directly comparing the ability of shRNAs delivered from different co-RNA platforms to initiate knockdown of the same gene targets, we found that multiple U6/shRNA cassettes offered the most reliable and predictable suppression of both single and multiple-gene targets. These results highlight some important strengths and pitfalls of the currently used methods for multiple shRNA delivery, and provide valuable insights for the design and application of reliable co-RNAi.</p

    Disorders of sex development : insights from targeted gene sequencing of a large international patient cohort

    Get PDF
    Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. Results: We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46, XY DSD and 48 with 46, XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46, XY DSD. In patients with 46, XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. Conclusions: Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes

    Practical applications of RNAi for bovine genomics

    Full text link

    The 5′ Leader of the mRNA Encoding the Marek's Disease Virus Serotype 1 pp14 Protein Contains an Intronic Internal Ribosome Entry Site with Allosteric Properties ▿

    No full text
    We demonstrate the presence of a functional internal ribosome entry site (IRES) within the 5′ leader (designated 5L) from a variant of bicistronic mRNAs that encode the pp14 and RLORF9 proteins from Marek's disease virus (MDV) serotype 1. Transcribed as a 1.8-kb family of immediate-early genes, the mature bicistronic mRNAs have variable 5′ leader sequences due to alternative splicing or promoter usage. Consequently, the presence or absence of the 5L IRES in the mRNA dictates the mode of pp14 translation and leads to the production of two pp14 isoforms that differ in their N-terminal sequences. Real-time reverse transcription-quantitative PCR indicates that the mRNA variants with the 5L IRES is two to three times more abundant in MDV-infected and transformed cells than the mRNA variants lacking the 5L IRES. A common feature to all members of the 1.8-kb family of transcripts is the presence of an intercistronic IRES that we have previously shown to control the translation of the second open reading frame (i.e., RLORF9). Investigation of the two IRESs residing in the same bicistronic reporter mRNA revealed functional synergism for translation efficiency. In analogy with allosteric models in proteins, we propose IRES allostery to describe such a novel phenomenon. The functional implications of our findings are discussed in relation to host-virus interactions and translational control

    Overexpression of Aromatase Alone is Sufficient for Ovarian Development in Genetically Male Chicken Embryos

    Get PDF
    <div><p>Estrogens play a key role in sexual differentiation of both the gonads and external traits in birds. The production of estrogen occurs via a well-characterised steroidogenic pathway, which is a multi-step process involving several enzymes, including cytochrome P450 aromatase. In chicken embryos, the aromatase gene (<i>CYP19A1</i>) is expressed female-specifically from the time of gonadal sex differentiation. To further explore the role of aromatase in sex determination, we ectopically delivered this enzyme using the retroviral vector RCASBP <i>in ovo</i>. Aromatase overexpression in male chicken embryos induced gonadal sex-reversal characterised by an enlargement of the left gonad and development of ovarian structures such as a thickened outer cortex and medulla with lacunae. In addition, the expression of key male gonad developmental genes (DMRT1, SOX9 and Anti-Müllerian hormone (AMH)) was suppressed, and the distribution of germ cells in sex-reversed males followed the female pattern. The detection of SCP3 protein in late stage sex-reversed male embryonic gonads indicated that these genetically male germ cells had entered meiosis, a process that normally only occurs in female embryonic germ cells. This work shows for the first time that the addition of aromatase into a developing male embryo is sufficient to direct ovarian development, suggesting that male gonads have the complete capacity to develop as ovaries if provided with aromatase.</p></div

    Schematic representation of putative gonad promoter sequences.

    No full text
    <p>All numbers shown are relative to the transcriptional start site (TSS) for each putative promoter sequence. The <i>SF1p</i> contains several promoter elements that have been described previously <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0101811#pone.0101811-Kudo1" target="_blank">[16]</a>. Both <i>aromatase</i> and <i>AMH</i> promoters contain TATA boxes and consensus SF1 binding sites. The <i>AMH</i> promoter also contains an estrogen responsive element (ERE). The <i>WT1</i> promoter is TATA-less and no other binding elements were identified. All promoter sequences were cloned into the RCANBP viral vector directly upstream of the EGFP open reading frame.</p
    corecore