91 research outputs found
Reverse engineering a gene network using an asynchronous parallel evolution strategy.
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: The use of reverse engineering methods to infer gene regulatory networks by fitting mathematical models to gene expression data is becoming increasingly popular and successful. However, increasing model complexity means that more powerful global optimisation techniques are required for model fitting. The parallel Lam Simulated Annealing (pLSA) algorithm has been used in such approaches, but recent research has shown that island Evolutionary Strategies can produce faster, more reliable results. However, no parallel island Evolutionary Strategy (piES) has yet been demonstrated to be effective for this task. RESULTS: Here, we present synchronous and asynchronous versions of the piES algorithm, and apply them to a real reverse engineering problem: inferring parameters in the gap gene network. We find that the asynchronous piES exhibits very little communication overhead, and shows significant speed-up for up to 50 nodes: the piES running on 50 nodes is nearly 10 times faster than the best serial algorithm. We compare the asynchronous piES to pLSA on the same test problem, measuring the time required to reach particular levels of residual error, and show that it shows much faster convergence than pLSA across all optimisation conditions tested. CONCLUSIONS: Our results demonstrate that the piES is consistently faster and more reliable than the pLSA algorithm on this problem, and scales better with increasing numbers of nodes. In addition, the piES is especially well suited to further improvements and adaptations: Firstly, the algorithm's fast initial descent speed and high reliability make it a good candidate for being used as part of a global/local search hybrid algorithm. Secondly, it has the potential to be used as part of a hierarchical evolutionary algorithm, which takes advantage of modern multi-core computing architectures
Bayesian meta-analysis across genome-wide association studies of diverse phenotypes
Genome-wide association studies (GWAS) are a powerful tool for understanding the genetic basis of diseases and traits, but most studies have been conducted in isolation, with a focus on either a single or a set of closely related phenotypes. We describe MetABF, a simple Bayesian framework for performing integrative meta-analysis across multiple GWAS using summary statistics. The approach is applicable across a wide range of study designs and can increase the power by 50% compared with standard frequentist tests when only a subset of studies have a true effect. We demonstrate its utility in a meta-analysis of 20 diverse GWAS which were part of the Wellcome Trust Case Control Consortium 2. The novelty of the approach is its ability to explore, and assess the evidence for a range of possible true patterns of association across studies in a computationally efficient framework.Peer reviewe
Response to anti-IL17 therapy in inflammatory disease is not strongly impacted by genetic background
Response to the anti-IL17 monoclonal antibody secukinumab is heterogeneous, and not all participants respond to treatment. Understanding whether this heterogeneity is driven by genetic variation is a key aim of pharmacogenetics and could influence precision medicine approaches in inflammatory diseases. Using changes in disease activity scores across 5,218 genotyped individuals from 19 clinical trials across four indications (psoriatic arthritis, psoriasis, ankylosing spondylitis, and rheumatoid arthritis), we tested whether genetics predicted response to secukinumab. We did not find any evidence of association between treatment response and common variants, imputed HLA alleles, polygenic risk scores of disease susceptibility, or cross-disease components of shared genetic risk. This suggests that anti-IL17 therapy is equally effective regardless of an individualās genetic background, a finding that has important implications for future genetic studies of biological therapy response in inflammatory diseases
Defining predictors of responsiveness to advanced therapies in Crohnās disease and ulcerative colitis: protocol for the IBD-RESPONSE and nested CD-metaRESPONSE prospective, multicentre, observational cohort study in precision medicine
Introduction: Characterised by chronic inflammation of the gastrointestinal tract, inflammatory bowel disease (IBD) symptoms including diarrhoea, abdominal pain and fatigue can significantly impact patientās quality of life. Therapeutic developments in the last 20 years have revolutionised treatment. However, clinical trials and real-world data show primary non-response rates up to 40%. A significant challenge is an inability to predict which treatment will benefit individual patients. Current understanding of IBD pathogenesis implicates complex interactions between host genetics and the gut microbiome. Most cohorts studying the gut microbiota to date have been underpowered, examined single treatments and produced heterogeneous results. Lack of cross-treatment comparisons and well-powered independent replication cohorts hampers the ability to infer real-world utility of predictive signatures. IBD-RESPONSE will use multi-omic data to create a predictive tool for treatment response. Future patient benefit may include development of biomarker-based treatment stratification or manipulation of intestinal microbial targets. IBD-RESPONSE and downstream studies have the potential to improve quality of life, reduce patient risk and reduce expenditure on ineffective treatments. Methods and analysis: This prospective, multicentre, observational study will identify and validate a predictive model for response to advanced IBD therapies, incorporating gut microbiome, metabolome, single-cell transcriptome, human genome, dietary and clinical data. 1325 participants commencing advanced therapies will be recruited from ~40 UK sites. Data will be collected at baseline, week 14 and week 54. The primary outcome is week 14 clinical response. Secondary outcomes include clinical remission, loss of response in week 14 responders, corticosteroid-free response/remission, time to treatment escalation and change in patient-reported outcome measures. Ethics and dissemination: Ethical approval was obtained from the Wales Research Ethics Committee 5 (ref: 21/WA/0228). Recruitment is ongoing. Following study completion, results will be submitted for publication in peer-reviewed journals and presented at scientific meetings. Publications will be summarised at www.ibd-response.co.uk. Trial registration number: ISRCTN96296121
Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders.
Irritable bowel syndrome (IBS) results from disordered brain-gut interactions. Identifying susceptibility genes could highlight the underlying pathophysiological mechanisms. We designed a digestive health questionnaire for UK Biobank and combined identified cases with IBS with independent cohorts. We conducted a genome-wide association study with 53,400 cases and 433,201 controls and replicated significant associations in a 23andMe panel (205,252 cases and 1,384,055 controls). Our study identified and confirmed six genetic susceptibility loci for IBS. Implicated genes included NCAM1, CADM2, PHF2/FAM120A, DOCK9, CKAP2/TPTE2P3 and BAG6. The first four are associated with mood and anxiety disorders, expressed in the nervous system, or both. Mirroring this, we also found strong genome-wide correlation between the risk of IBS and anxiety, neuroticism and depression (rgā>ā0.5). Additional analyses suggested this arises due to shared pathogenic pathways rather than, for example, anxiety causing abdominal symptoms. Implicated mechanisms require further exploration to help understand the altered brain-gut interactions underlying IBS
Recommended from our members
High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis.
This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/ng/journal/v47/n2/full/ng.3176.html#acknowledgmentsGenome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.We would like to thank the International PSC study group (http://www.ipscsg.org/) for sharing data. We are grateful to B.A. Lie and K. Holm for helpful discussions. J.D.R. holds a Canada Research Chair, and this work was supported by a US National Institute of Diabetes and Digestive and Kidney Diseases grant (NIDDK; R01 DK064869 and U01 DK062432). The laboratory of A.F. is supported by the German Ministry of Education and Research (BMBF) grant program e:Med (sysINFLAME). A.F. receives infrastructure support from the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence 'Inflammation at Interfaces' and holds an endowment professorship (Peter Hans Hofschneider Professorship) of the Foundation for Experimental Biomedicine (Zurich, Switzerland). Grant support for T.H.K. and A.F. was received from the European Union Seventh Framework Programme (FP7/2007-2013, grant number 262055, ESGI). M.N.C. is supported by the Intramural Research Program of the US National Institutes of Health (NIH), Frederick National Laboratory, Center for Cancer Research. This project has been funded in whole or in part with federal funds from the Frederick National Laboratory for Cancer Research, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US government. J.C.B. was supported by a Wellcome Trust grant (WT098051). D.M. and V.K. are supported by the NIHR Cambridge Biomedical Research Centre. L.P.S. is supported by an NIDDK grant (U01 DK062429-14). J.A.T. is supported by the UK Medical Research Council. D.P.B.M. is supported by the Leona M. and Harry B. Helmsley Charitable Trust, the European Union (305479) and by grants from the NIDDK (U01 DK062413, P01 DK046763-19, U54 DE023789-01), the National Institute of Allergy and Infectious Diseases (NIAID; U01 AI067068) and the Agency for Healthcare Research and Quality (AHRQ; HS021747). R.H.D. holds the Inflammatory Bowel Disease Genetic Research endowed chair at the University of Pittsburgh and was supported by an NIDDK grant (U01 DK062420) and a US National Cancer Institute grant (CA141743). S.L.H. and J.R.O. would like to also acknowledge the support of the US NIH (R01 NS049477 and 1U19 A1067152) and the National Multiple Sclerosis Society (RG 2899-D11). S.L. wishes to acknowledge support from the Australian National Health and Medical Research Council (R.D. Wright Career Development Fellowship, APP1053756)
- ā¦