84 research outputs found

    A homogeneous aa index: 1. secular variation

    Get PDF
    Originally complied for 1868-1967 and subsequently continued so that it now covers 150 years, the aa index has become a vital resource for studying space climate change. However, there have been debates about the inter-calibration of data from the different stations. In addition, the effects of secular change in the geomagnetic field have not previously been allowed for. As a result, the components of the “classical” aa index for the southern and northern hemispheres (aaS and aaN) have drifted apart. We here separately correct both aaS and aaN for both these effects using the same method as used to generate the classic aa values but allowing {\delta}, the minimum angular separation of each station from a nominal auroral oval, to vary as calculated using the IGRF-12 and gufm1 models of the intrinsic geomagnetic field. Our approach is to correct the quantized aK-values for each station, originally scaled on the assumption that {\delta} values are constant, with time-dependent scale factors that allow for the drift in {\delta}. This requires revisiting the intercalibration of successive stations used in making the aaS and aaN composites. These intercalibrations are defined using independent data and daily averages from 11 years before and after each station change and it is shown that they depend on the time of year. This procedure produces new homogenized hemispheric aa indices, aaHS and aaHN, which show centennial-scale changes that are in very close agreement. Calibration problems with the classic aa index are shown to have arisen from drifts in {\delta} combined with simpler corrections which gave an incorrect temporal variation and underestimate the rise in aa during the 20th century by about 15%

    A homogeneous aa index: 2. hemispheric asymmetries and the equinoctial variation

    Get PDF
    Paper 1 [Lockwood et al., 2018] generated annual means of a new version of the aa geomagnetic activity index which includes corrections for secular drift in the geographic coordinates of the auroral oval, thereby resolving the difference between the centennial-scale change in the northern and southern hemisphere indices, aaN and aaS. However, other hemispheric asymmetries in the aa index remain: in particular, the distributions of 3-hourly aaN and aaS values are different and the correlation between them is not high on this timescale (r = 0.66). In the present paper, a location-dependant station sensitivity model is developed using the am index (derived from a much more extensive network of stations in both hemispheres) and used to reduce the difference between the hemispheric aa indices and improve their correlation (to r = 0.79) by generating corrected 3-hourly hemispheric indices, aaHN and aaHS, which also include the secular drift corrections detailed in Paper 1. These are combined into a new, “homogeneous” aa index, aaH. It is shown that aaH, unlike aa, reveals the “equinoctial”-like time-of-day/time-of-year pattern that is found for the am index

    Time-of-day/time-of-year response functions of planetary geomagnetic indices

    Get PDF
    Aims: To elucidate differences between commonly-used mid-latitude geomagnetic indices and study quantitatively the differences in their responses to solar forcing as a function of Universal Time (UT), time-of-year (F), and solar-terrestrial activity level. To identify the strengths, weaknesses and applicability of each index and investigate ways to correct for any weaknesses without damaging their strengths. Methods: We model how the location of a geomagnetic observatory influences its sensitivity to solar forcing. This modelling for a single station can then be applied to indices that employ analytic algorithms to combine data from different stations and thereby we derive the patterns of response of the indices as a function of UT, F and activity level. The model allows for effects of solar zenith angle on ionospheric conductivity and of the station’s proximity to the midnight-sector auroral oval: it employs coefficients that are derived iteratively by comparing data from the current aa index stations (Hartland and Canberra) to simultaneous values of the am index, constructed from chains of stations in both hemispheres. This is done separately for 8 overlapping bands of activity level, as quantified by the am index. Initial estimates were obtained by assuming the am response is independent of both F and UT and the coefficients so derived were then used to compute a corrected F-UT response pattern for am. This cycle was repeated until it resulted in changes in predicted values that were below the adopted uncertainty level (0.001%). The ideal response pattern of an index would be uniform and linear (i.e., independent of both UT and F and the same at all activity levels). We quantify the response uniformity using the percentage variation at any activity level, V = 100(S/), where S is the index’s sensitivity at that activity level and S is the standard deviation of S: both S and S were computed using the 8 UT ranges of the 3-hourly indices and 20 equal-width ranges of F. As an overall metric of index performance, we take an occurrence-weighted mean of V, Vav, over the 8 activity-level bins. This metric would ideally be zero and a large value shows that the index compilation is introducing large spurious UT and/or F variations into the data. We also study index performance by comparisons with the SME and SML indices, compiled from a very large number of stations, and with an optimum solar wind “coupling function”, derived from simultaneous interplanetary observations. Results: It is shown that a station’s response patterns depend strongly on the level of geomagnetic activity because at low activity levels the effect of solar zenith angle on ionospheric conductivity dominates over the effect of station proximity to the midnight-sector auroral oval, whereas the converse applies at high activity levels. The metric Vav for the two-station aa index is modelled to be 8.95%, whereas for the multi-station am index it is 0.65%. The ap (and hence Kp) index cannot be analyzed directly this way because its construction employs tabular conversions, but the very low Vav for am allows us to use / to evaluate the UT-F response patterns for ap. This yields Vav = 11.20% for ap. The same empirical test applied to the classical aa index and the new “homogenous” aa index, aaH (derived from aa using the station sensitivity model), yields Vav of, respectively, 10.62% (i.e., slightly higher than the modelled value) and 5.54%. The ap index value of Vav is shown to be high because it exaggerates the average semi-annual variation and has an annual variation giving a lower average response in northern hemisphere winter. It also contains a strong artefact UT variation. We derive an algorithm for correcting for this uneven response which gives a corrected ap value, apC, for which Vav is reduced to 1.78%. The unevenness of the ap response arises from the dominance of European stations in the network used and the fact that all data are referred to a European station (Niemegk). However, in other contexts, this is a strength of ap, because averaging similar data gives increased sensitivity and more accurate values on annual timescales, for which the UT-F response pattern is averaged out
    • 

    corecore