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The total solar eclipse that occurred over the Arctic
region on 20 March 2015 was seen as a partial eclipse
over much of Europe. Observations of this eclipse
were used to investigate the high time resolution
(1 min) decay and recovery of the Earth’s ionospheric
E-region above the ionospheric monitoring station in
Chilton, UK. At the altitude of this region (100 km),
the maximum phase of the eclipse was 88.88%
obscuration of the photosphere occurring at 9:29:41.5
UT. In comparison, the ionospheric response revealed
a maximum obscuration of 66% (leaving a fraction,
@, of uneclipsed radiation of 34 +4%) occurring
at 9:29 UT. The eclipse was re-created using data
from the Solar Dynamics Observatory to estimate
the fraction of radiation incident on the Earth’s
atmosphere throughout the eclipse from nine
different emission wavelengths in the extreme
ultraviolet (EUV) and X-ray spectrum. These
emissions, having varying spatial distributions,
were each obscured differently during the eclipse.
Those wavelengths associated with coronal emissions
(94, 211 and 335 A) most closely reproduced the time
varying fraction of unobscured radiation observed in
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the ionosphere. These results could enable historic ionospheric eclipse measurements to be
interpreted in terms of the distribution of EUV and X-ray emissions on the solar disc.

This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by
the 2015 UK eclipse’.

1. Introduction

The total solar eclipse visible over the Arctic region on 20 March 2015 gave observers across
the UK an opportunity to witness a partial solar eclipse in which between 95% and 85% of the
photosphere was obscured by the Moon, depending on the location of the observer. This was the
greatest obscuration visible over the UK since the total solar eclipse over the southwest of England
on 11 August 1999. During the 1999 solar eclipse, measurements were made of the Earth’s
ionosphere (the ionized portion of the Earth’s upper atmosphere created when extreme ultraviolet
(EUV) and X-ray radiation are absorbed by the neutral atmosphere at altitudes above 90 km).
Historically, prior to the space age, such measurements were made in an attempt to remotely
determine the composition of the upper atmosphere from the decay rate of the ionosphere in the
absence of solar radiation [1]. An implicit assumption was made in these early observations that
all ionizing radiation came from within the photosphere and so would be obscured at totality.
It has since been shown that this is not the case [2], with the majority of such short-wavelength
radiation being produced in the high-temperature solar corona. The rate of ionospheric decay
during solar eclipses was lower than expected due to continued ion production since, even at
totality, a significant proportion of the solar corona remains uneclipsed above the limb of the
eclipsed photosphere. With the advent of rocketry in the 1950s, the composition of the upper
atmosphere could be determined by direct measurements and so the practice of observing the
ionosphere during solar eclipses for these purposes became redundant. Now that the chemistry of
the Earth’s upper atmosphere has been determined, the many ionospheric experiments conducted
during eclipses from 1932 to date have been re-interpreted to study the variation in the size of the
uneclipsed corona [3-5]. Details of these early ionospheric eclipse experiments were collated in
1956 [1] while a few previously unpublished sets of eclipse data are included in the appendices
of more recent studies [3,4].

The 2015 eclipse provided a further opportunity to investigate the decay of the Earth’s
ionosphere, although this time the focus of the experiment was to compare the observed
ionospheric changes with artificial eclipses created using data from the Solar Dynamics Observatory
(SDO) [6] in order to determine whether it is possible to detect the obscuration of active regions
within the solar corona by observing simultaneous changes to the rate of decay of charge in the
Earth’s ionosphere.

Routine ionospheric soundings have been made in the UK since 20 September 1932, initially
at the Radio Research Station at Ditton Park near Slough and subsequently at the Rutherford
Appleton Laboratory in Chilton, Oxfordshire, UK [7]. Short-wave (1 MHz to approx. 20 MHz)
radio pulses are transmitted and received at the same location. These measurements exploit the
fact that the resonant frequency of ionospheric electrons (f, Hz) is proportional to the square-root
of the electron concentration (N, m~2) with the relation f~94/N. A radio signal is returned from
the ionosphere when the frequency of the radio pulse matches the resonant frequency of the local
electrons. Since the density of ionization varies with height due to the relative extent with which
solar radiation over the EUV and X-ray spectrum can penetrate the atmosphere, a height profile
of ionization can be built up by transmitting short-wave radio pulses over a range of frequencies
corresponding to the range of ionospheric resonant frequencies. The data are displayed as plots
of time of flight against radio frequency known as ionograms. By assuming that the radio pulses
travel at the speed of light in free space, the height can be estimated from the time of flight.
These ‘virtual heights’ are overestimates for all but the lowest frequencies, however, since the
atmosphere is weakly ionized, slowing the speed of the signal due to its resonance with the local
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electrons. The electron concentration of each layer can be accurately determined by recording
the highest frequency returned from each layer. The equipment used has varied from analogue
equipment recording the data directly onto film to a modern digital sounder or ‘Digisonde” in
which the data are stored electronically and made available via the UK Solar System Data Centre
(UKSSDC, www.ukssdc.ac.uk).

At the height of the ionospheric E-region (approx. 100 km), the atmosphere is dominated by
molecular ions and neutral gases such that the rate of change of ionization is of the form

o =1, (1.1)

where N is the electron concentration (m~3), ¢ is time in seconds, g is the ionization production
rate (m~3s~!) and « is the loss rate of ionization (m3s~1). The production rate g is proportional to
the intensity of the incoming solar radiation and, to a first approximation, varies with the cosine
of the solar zenith angle.

Atmospheric constituent gases can be ionized by X-ray and EUV emissions, where the
energy of the ionizing photon exceeds the threshold ionization energy [8]. At altitudes of the
ionospheric E-region (approx. 100 km), the composition of the neutral thermosphere is dominated
by molecular species (O2 and N»). When sunlit, the primary ionization mechanism of these ions is
through photoionization and the dominant loss mechanism is through dissociative recombination
with free electrons [8].

During an eclipse, the fraction, @, of ionizing radiation reaching the top of the atmosphere
varies throughout, being a minimum around the time of maximum obscuration of the corona.
Since the radiation from the solar corona is not distributed evenly, this may not correspond to the
time of maximum eclipse for the photosphere. Equation (1.1) can then be rewritten as

dNg

where the subscript E refers to the eclipse day. While equation (1.2) holds to first order, it
contains the implicit assumption that the production and loss rates are not affected by any
changes to thermospheric composition or temperature throughout the solar eclipse. At E-region
altitudes, the primary loss mechanism is via dissociative recombination. This loss process is
weakly dependent on the electron temperature. The lifetime of individual ions at this altitude is
of the order of seconds and so transport of ionization is not significant. By comparing the electron
density observed during the day of the eclipse with equivalent times from a control (in our
case, modelled values in which there is no eclipse), it is possible to estimate @ by combining
equations (1.1) and (1.2):

dNg/dt + aNZ

— B TEE 1.
dN/dt + aN2 (1.3)

In practice, the rates of change of ionization are sufficiently slow that, to a first-order
approximation, they can be ignored, allowing the fraction of ionizing radiation to be expressed as
_NE

N2°
By measuring the critical frequencies throughout the day of the eclipse and comparing these to
a control, it becomes possible to estimate the fraction of ionizing radiation incident on the upper
atmosphere during the eclipse. The aim of this study was to determine whether the structured
emissions within the solar corona could be detected through changes to the decay rate of the
Earth’s ionosphere.

During this eclipse, the distribution of emissions across a variety of wavelengths within the
X-ray and EUV section of the solar spectrum were monitored from the SDO [6]. The Atmospheric
Imaging Assembly (AIA) instrument [9] on board the SDO makes high-cadence (2 min) full-sun
images at wavelengths corresponding to specific emissions in the X-ray and EUV section of the
electromagnetic spectrum. Each wavelength is associated with an emission from plasma at a

@ (14)
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Table 1. lon emissions monitored by the AlA instrument on board the SD0 (adapted from table 1, Lemen et al. [9]). Emissions are
ordered in ascending characteristic temperature (where there are two distinct temperatures associated with a given wavelength,
the lower is used).

channel (R) primary ion(s) region of atmosphere characteristic temperature, log(T)

4500 continuum photosphere
B e temperatu - m|n|mum . ph : tosp o
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B T - vereg|on S g
T TR - vereg|on s L ——
T T TRR— ﬂar|ng e g —

specific temperature within the Sun’s atmosphere. Nine of these wavelengths, ranging from 94 to
1700 A, are considered here (the tenth, at 4500 A, isnot used, as the cadence at this wavelength was
not sufficient during the eclipse period). These wavelengths, along with the effective temperature
and emission species in the solar plasma, are presented in table 1. The effective temperatures
covered by these emissions range from 5012 K to 19950 000 K.

Solar EUV and X-ray emissions on the day of the eclipse, as measured by AIA on SDO, are
presented in figure 1. When viewed in X-ray or shorter EUV wavelengths, emissions reveal two
active regions on the limb adjacent to the southeast and southwest quadrants of the solar disc. The
distribution of emissions varies between wavelengths, with those originating in the photosphere
revealing more uniform emissions, with no significant emissions beyond the limb of the disc.
It should be expected, therefore, that the fraction of ionizing radiation incident on the Earth’s
atmosphere at each of these wavelengths will differ from each other throughout the eclipse.

2. Method

The solar eclipse that occurred on the morning of 20 March 2015 was not total in the ionosphere
above Chilton. As viewed from this vantage point, the Moon crossed the solar disc from right to
left, leaving the solar south pole exposed throughout. First contact was at 8:23:28 UT, last contact
was at 10:40:04 UT, with maximum eclipse (88.88%) occurring at 9:29:41 UT. The locations of
the analogous positions at ground level are shown in figure 2 as a dotted line. Larger dots are
plotted at intervals of 15min. Owing to the rotation of the Earth, this location tracks across the
surface during the morning of the eclipse, with first contact occurring over central Ireland (square
symbol), peak eclipse over the North Wales coast (triangular symbol) and last contact near Chester
(rightmost dot). For comparison, local circumstances for Bangor (53.22° N, 4.128° W), a town on
the North Wales coast (indicated by the “x” in figure 2), were: first contact 08:25:00 UT, last contact
10:38:49 UT, with maximum eclipse (90.03%) occurring at 9:29:57 UT. In order to obtain ground
truth for the ionospheric observations above Chilton, members of the North Wales Astronomy
Society photographed the Sun through telescopes fitted with narrow-band filters centred on the
Ha emission (656.281 nm). Such images enable large-scale features such as prominences and
filaments within the solar atmosphere to be imaged. Observations were made from Trelawnyd
(53.3069° N, 3.3659° W), which is represented by a “+” symbol in figure 2. Comparing images taken
from ground-based observers with simulated eclipses using SDO data provides a useful check on
the analysis. The position of the ionospheric observatory at Chilton is represented by a diamond
symbol in figure 2.

H

S i o SoBandiaiors


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on December 2, 2016

Figure 1. The Sun imaged in nine wavelengths in the EUV and X-ray spectrum by the AIA on the SDO. Each image is labelled
with the wavelength of the emission (in dngstrom). The colour coding of each image has been chosen to match the colours of
the curvesin figure 5. These images represent the emissions at 10 UT on the morning of the eclipse. The distribution of emissions
did not change significantly throughout the course of the eclipse.

454° Yo

+52°

+50° : : : :
~10° —g° —6° 4 e 0°

Figure2. Amap ofthe UK and Ireland showing the path (dotted line) of the ground-level location where the eclipse obscuration
was analogous to that at 100 km above Chilton (diamond). Larger dots are plotted at intervals of 15 min. Owing to the rotation
of the Earth, this location tracks across the surface during the morning of the eclipse, with first contact occurring over central
Ireland (square), peak eclipse over the North Wales coast (triangle) and last contact near Chester (rightmost dot). The locations
of Bangor and Trelawnyd are represented by an “x " and a ", respectively.
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Figure 3. Time series for the E-region critical frequency, fof, on 20 March 2015 (day of the edlipse, solid line), the 19 March
2015 (day before the eclipse, dash-dotted line) and the modelled variation in fof (dotted line). Standard errors in the data are
represented as light and dark grey areas around each line, respectively.

After processing, SDO AIA images are aligned with solar north to the top, while information
about the positions of the Sun and Moon during the eclipse over Chilton was made with reference
to the local zenith angle. The angle between the Sun’s rotation axis and the direction of the local
zenith is equal to the position angle of the solar rotation axis relative to the celestial north pole
(—25°08' for this epoch) minus the parallactic angle (the angle at the object between the direction
to the celestial north pole and that of the zenith, measured positively eastwards).

In order to simulate the solar emissions incident on the Earth’s atmosphere, the orientation of
the Sun relative to the Moon was corrected for this angle and a mask was overlain on each SDO
image to simulate the eclipse seen at 100 km above Chilton. The signal from the unobscured pixels
was then summed and the fraction of the total radiation emitted at each time was calculated by
dividing this value by the total signal received from the uneclipsed Sun. This process was repeated
for all nine wavelengths used in this study.

Routine monitoring of the ionosphere above Chilton started in 1996 and continues the
sequence started in Slough in 1932 [6]. The current ionosonde is a Digisonde [10] that is set to
routinely transmit radio pulses between 1 and 20 MHz in 50 kHz steps. Such a sounding takes
around three minutes to complete. In order to achieve the cadence required to track the rapid
changes that occurred in the ionosphere during the eclipse, the equipment was set to transmit
pulses between 1.5 and 4.5 MHz in 50 kHz steps. With such a frequency range, a cadence of 1 min
was possible, with full soundings taken on the hour to enable the continuation of the long-term
hourly data series. This frequency range was chosen to enable the ionospheric E-region to be
studied in detail. The lower frequency was raised to 1.5 MHz since ionospheric returns are seldom
received below 1.5MHz due to the frequency response of the equipment. The E-region critical
frequency, foE, was then manually scaled from the resulting ionograms.

3. Results

Time series for foE on the day of the eclipse (solid line), the day before the eclipse (dash-dotted
line) and the modelled variation (dotted line) in foE are shown in figure 3. Uncertainties in
these values are represented by the grey areas around each line. Some values of foE were less
well defined than others due to the intermittent presence of a weak sporadic E-layer (caused by
reflection from meteoric metal ions), which occasionally obscured the E-layer critical frequency.
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Figure 4. A comparison of the Sun observed at 171 nm by SDO (left panel) with an image of the eclipse as observed from
Trelawnyd (right panel). The SD0image has been overlain with the calculated position of the moon, as observed at 100 km above
Chilton. The presence of prominences and filaments in the ground-based image match features in the SDO image, providing
useful corroboration of the coordinate transform.

The model foE values are generated by the Digisonde and made available in the automatically
scaled data as the parameter foEp.

Artificial eclipse sequences were generated for each of nine SDO wavelengths as described
above. These were then compared with images taken by observers located near the path along
which the ground-based eclipse local circumstances were equivalent to those in the ionosphere
above Chilton. Figure 4 presents a comparison at 8:42 UT of the Sun at 171 A observed by the
ATA instrument on SDO (left) with an image of the Sun in Ha as observed from Trelawnyd. The
presence of prominences and filaments match those features in the SDO image, providing useful
corroboration of the coordinate transform.

By using the modelled variation in foE as a control, values of ® were estimated throughout the
eclipse period. Since the modelled values make assumptions as to the expected ionizing radiation,
this time sequence was scaled by a factor of 2% to ensure that the values of @ immediately before
and after the eclipse were unity, as would be expected for an uneclipsed Sun. The variation of
@ values is plotted in figure 5a as a dark grey line, with the standard error represented by the
surrounding light grey area. Overplotted on this figure are the values of @ estimated from the
SDO data. The first to fourth contacts of the lunar limb with the active region over the western
(right-hand) limb of the Sun are represented by vertical dotted red lines. The same for the active
region on the eastern (left-hand) limb of the Sun are represented by vertical dotted blue lines.
It can be seen that there is an increase in the ionospheric decay rate as the first active region is
eclipsed on the western limb of the Sun, and an increase in the recovery of ionospheric densities
once the second active region on the eastern limb emerges from the lunar shadow. The differences
between the coronal and photospheric emissions can be clearly seen in figure 5b, where the time
derivative of three coronal emissions most closely following the ionospheric variations (cyan,
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fraction of uneclipsed ionizing radiation
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Figure 5. (a) The fraction of ionizing radiation incident on the ionosphere above Chilton, @, as a function of time (dark grey
line). Standard errors in this parameter are represented by the surrounding light grey area. Overplotted on this figure are the
values of @ estimated from SDO data for nine of the wavelengths measured by the AlA instrument. The wavelengths are listed
in the figure legend (in angstrom), along with the colour of each line. Uncertainties in these SDO-derived parameters have
been omitted for clarity but are estimated to be of the order of 1-2%. (b) The time derivative of the three SDO emissions that
most closely matched the ionospheric variability (cyan, black and red lines corresponding to wavelengths of 211, 335 and 94 A,
respectively) compared with the time derivative of a photospheric emission (purple line, corresponding to 1700 A). The first to
fourth contacts of the lunar limb with the active region over the western (right-hand side) limb of the Sun are represented by
vertical dotted red lines. The same for the active region on the eastern (left-hand side) limb of the Sun are represented by vertical
dotted blue lines.

black and red lines corresponding to emissions at 211, 335 and 94 A, respectively) are plotted
alongside the time derivative of a photospheric emission (1700 A, represented by the purple line).

As expected, the solar emissions that most closely match the ionospheric response to the
eclipse are those associated with emissions from the coronal plasma. While there is localized
structure in the location of the emissions on the solar disc and in the corona, the rate of change
in emission at all wavelengths is generally smooth throughout the eclipse. For those emissions
associated with the lower-temperature photospheric plasma, the total emission starts to decline
later than other wavelengths, reaches a deeper minimum (@ = 8.66%) and recovers sooner, as
would be expected for emissions confined to, and evenly distributed across, the solar disc. These
variations are more closely equivalent to the fraction of the disc occulted at any given time, with
a maximum obscuration of 91.34% (compared with a predicted photospheric magnitude of 90.3%
at maximum eclipse of 88.88%).
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In order to see whether the artificial eclipse curves matched the ionospheric response within
the expected errors, a Xz—test was applied to the time evolution of each SDO wavelength
compared with @ estimated from the ionospheric data. If the two datasets match within the
expected errors, the value of %2 will lie within n & /21, where 1 is the number of data points.
As the @ estimated from the SDO data vary smoothly throughout the eclipse, their values were
interpolated at the times of the ionospheric observations, giving # = 165 and a range of acceptable
x2 values of 18. Errors in @ estimated from the SDO data (approx. 2%) are smaller than those
associated with the ionospheric data (approx. 10-20%). The @ variations for wavelengths of
304, 1600 and 1700 A gave x2 > n, indicating that these curves do not match the ionospheric
observations. For 171 A, x? =192, which is just outside the upper level of the x? error range
(183). All other wavelengths give x? values below the lower range of expected values (147),
indicating that the datasets match more closely than indicated by the expected errors. It may
be that the errors associated with the ionospheric data were pessimistic given the obscuration by
the underlying sporadic E-layer.

Having ascertained that the overall ionospheric response to the emissions closely followed
the occultation of ionizing radiation, we then turned our attention to the small-scale variability
seen in the ionosphere. With no sudden changes in solar emissions, it is clear that the remaining
ionospheric variability must result from local sources of variability such as gravity waves or
modulation of the sporadic E-layer by changes to the wind shear at E-region altitudes. However,
an initial study of the frequency spectrum in the ionospheric data did not reveal any dominant
frequencies.

4. Discussion and conclusion

While good agreement has been found between the large-scale variations in E-region ionospheric
number densities and the fraction of ionizing radiation incident upon the Earth’s atmosphere
during the solar eclipse, it is not possible to draw any conclusions as to the possibility of
identifying the occultation of specific active regions on the Sun by the ionospheric response. No
sharp decreases in ionospheric response were seen since the emissions were distributed across
the solar disc rather than being concentrated in a single isolated active region. In addition,
the presence of a weak and intermittent sporadic E-layer served to increase the uncertainty in
identifying the peak densities associated with the true E-region peak.

The results presented here do, however, provide evidence that if the ionospheric response from
multiple locations were compared, these could be combined to triangulate the location of any
active regions on the solar disc or localized emissions from the solar corona. Multiple ionospheric
observation sites would also have the advantage that any ionospheric fluctuations due to local
influences would be averaged out in the final analysis. If such an analysis were conducted for
modern ionospheric data and validated against SDO images, the technique could then be used
to investigate the localized nature of solar EUV and X-ray emissions during eclipses that were
observed prior to the advent of high-altitude rockets and spacecraft. While such observations
would provide only a snapshot of conditions in the solar corona, such information may help
interpret any subsequent geomagnetic events and would extend our observations of solar EUV
and X-ray emissions above active regions by at least a decade.

Data accessibility. Ionospheric data can be obtained through the UK Solar System Data Centre (www.ukssdc.ac.
uk). Data from the Solar Dynamics Observatory are free to access and can be obtained via www.nasa.gov/sdo.
Information on the ground-based local circumstances for the eclipse can be obtained via www.eclipse.org
managed by S. A. Bell at HM. Nautical Almanac Office. Specific calculations on the local circumstances at
ionospheric heights were provided by S. A. Bell. For information about the ground-based solar images, contact
the North Wales Astronomy Society. Data analysis was carried out by C. J. Scott using MATLAB. Code is
available upon request from chris.scott@reading.ac.uk.

Authors’ contributions. C.J.S. helped design the experiment, led the data analysis and produced the first draft of
the paper. ].B. helped design the experiment, collected and provided the ionospheric measurements. S.A.B.
calculated local circumstances for the eclipse. J.W. carried out image processing of the ground-based solar
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