1,163 research outputs found

    Biorefinery concept with green solvents towards the phenolic valorization

    Get PDF
    The efficient separation, hydrolysis and conversion of principal components of lignocellulosic biomass allows to produce chemicals and value added compounds. Ionic liquids (ILs) have been used for the pre-treatment and fractionation of biomass.1-3 The pre-treatment reveals that phenolic compounds were found in the IL phase. This work was devoted for the extraction of phenolic compounds from the recovered IL liquid using several adsorption resins in small scale batch processes. Phenolic compounds, such as vanillin, catechol and flavonoids were identified in extraction samples and also quantified. Temperature, residence time and water amount were evaluated in order to find optimal extraction conditions of phenolic compounds from IL

    Economic, social and environmental impacts attained by the use of the effluents generated within a small-scale biorefinery concept

    Get PDF
    ABSTRACT: Biorefineries are emerging as the proper route to defeat climate change and other social, socio-economic and environmental concerns. So far, no residual lignocellulosic biomass-based biorefineries have been yet industrially implemented, mainly due to its economic viability. This article exposes some elements that may help overcome the bottlenecks associated to its social, economic and environmental sustainability: small-scale approaches, biomass valorisation through added-value products and near-zero effluent.info:eu-repo/semantics/publishedVersio

    Ionic liquids as a tool for lignocellulosic biomass fractionation

    Get PDF
    Lignocellulosic biomass composes a diversity of feedstock raw materials representing an abundant and renewable carbon source. In majority lignocellulose is constituted by carbohydrate macromolecules, namely cellulose and hemicellulose, and by lignin, a polyphenilpropanoid macromolecule. Between these biomacromolecules, there are several covalent and non-covalent interactions defining an intricate, complex and rigid structure of lignocellulose. The deconstruction of the lignocellulosic biomass makes these fractions susceptible for easier transformation to large number of commodities including energy, chemicals and material within the concept of biorefinery. Generally, the biomass pre-treatment depends on the final goal in the biomass processing. The recalcitrance of lignocellulose materials is the main limitation of its processing once the inherent costs are excessively high for the conventional pre-treatments. Furthermore, none of the currently known processes is highly selective and efficient for the satisfactory and versatile use, thus, new methodologies are still studied broadly. The ionic liquid technology on biomass processing is relatively recent and first studies were focused on the lignocellulosic biomass dissolution in different ionic liquids (ILs). The dissolution in IL drives to the structural changes in the regenerated biomass by reduction of cellulose crystallinity and lignin content contrasting to the original biomass. These findings provided ILs as tools to perform biomass pre-treatment and the advantageous use of their specific properties over the conventional pre-treatment processes. This review shows the critical outlook on the study of biomass dissolution and changes occurred in the biomass during this process as well as on the influence of several crucial parameters that govern the dissolution and further pre-treatment process. The review of currently known methods of biomass fractionation in IL and aqueous-IL mixtures is also discussed here and perspectives regarding these topics are given as well

    Green chemistry and the biorefinery concept

    Get PDF
    Green Chemistry and Biorefinery concepts are two approaches helping to develop new and more sustainable processes. The implementation of both methodologies impels to fossil-independent future with bioeconomy based on natural feedstock like biowaste and industrial by-products. The development of technologies for valorisation of these resources is a key role of society in the creation of sustainable and more environmentally friendly future

    An Outlook on the Localisation and Structure-Function Relationships of R Proteins in Solanum

    Get PDF
    The co-evolution of plants and plant-pathogens shaped a multi-layered defence system in plants, in which Resistance proteins (R proteins) play a significant role. A fundamental understanding of the functioning of these R proteins and their position in the broader defence system of the plant is essential. Sub-project 3 of the BIOEXPLOIT programme studies how R proteins are activated upon effector recognition and how recognition is conveyed in resistance signalling pathways, using the solanaceous R proteins Rx1 (from S. tuberosum spp. andigena; conferring extreme resistance against Potato Virus X), I-2 (from S. lycopersicon; mediating resistance to Fusarium oxysporum) and Mi-1.2 (from S. lycopersicon; conferring resistance to Meloidogyne incognita) as model systems. The results obtained in this project will serve as a model for other R proteins and will be translated to potential applications or alternative strategies for disease resistance. These include the modification of the recognition specificity of R proteins with the aim to obtain broad spectrum resistance to major pathogens in potato

    High pressure vapour-liquid equilibrium of volatiles in supercritical carbon dioxide

    Get PDF
    Binary vapour-liquid equilibrium of thymoquinone and carbon dioxide at the isothermal conditions was carried out at temperature 323.15 K and pressures from 6 to 10 MPa. The experimental data were fitted to the Soave-Redlich-Kwong equation of state. Results could be used for selection of process parameters in separation of volatiles from raw oil or for evaluation of existing separation technologies

    Efficient extraction of vicine from faba beans using reactive system of high-pressure CO2/water

    Get PDF
    ABSTRACT: Vicine from faba bean is a causative agent of favism, a genetic disease, which manifests as hemolytic anemia. Despite that low vicine varieties of faba bean exist, they are not widely cultivated. Several extraction methods of vicine from faba beans have been presented in the literature, however, their low efficiency associated to time-consuming and costly process limit the practical use. This work for the first time addresses the employment of high-pressure CO2-assisted extraction of the pyrimidine glycosides from the faba bean. For this purpose, the effect of temperature, CO2 pressure and time on vicine extraction was scrutinized using Box-Behnken design of experiments. Response surface methodology was used to determine the optimal extraction conditions. At 40.7 °C, 8.1 bar of CO2 pressure and 5.1 min of extraction, 81% of total vicine should be extracted from faba bean.info:eu-repo/semantics/publishedVersio
    corecore