729 research outputs found

    Fredkin Gates for Finite-valued Reversible and Conservative Logics

    Full text link
    The basic principles and results of Conservative Logic introduced by Fredkin and Toffoli on the basis of a seminal paper of Landauer are extended to d-valued logics, with a special attention to three-valued logics. Different approaches to d-valued logics are examined in order to determine some possible universal sets of logic primitives. In particular, we consider the typical connectives of Lukasiewicz and Godel logics, as well as Chang's MV-algebras. As a result, some possible three-valued and d-valued universal gates are described which realize a functionally complete set of fundamental connectives.Comment: 57 pages, 10 figures, 16 tables, 2 diagram

    Multimodality in Pervasive Environment

    Get PDF
    Future pervasive environments are expected to immerse users in a consistent world of probes, sensors and actuators. Multimodal interfaces combined with social computing interactions and high-performance networking can foster a new generation of pervasive environments. However, much work is still needed to harness the full potential of multimodal interaction. In this paper we discuss some short-term research goals, including advanced techniques for joining and correlating multiple data flows, each with its own approximations and uncertainty models. Also, we discuss some longer term objectives, like providing users with a mental model of their own multimodal "aura", enabling them to collaborate with the network infrastructure toward inter-modal correlation of multimodal inputs, much in the same way as the human brain extracts a single self-conscious experience from multiple sensorial data flows

    Design and Characterization of a Hypervelocity Expansion Tube Facility

    Get PDF
    We report on the design and characterization of a 152 mm diameter expansion tube capable of accessing a range of high enthalpy test conditions with Mach numbers up to 7.1 for aerodynamic studies. Expansion tubes have the potential to offer a wide range of test flow conditions as gas acceleration is achieved through interaction with an unsteady expansion wave rather than expansion through a fixed area ratio nozzle. However, the range of test flow conditions is in practice limited by a number of considerations such as short test time and large amplitude flow disturbances. We present a generalized design strategy for small-scale expansion tubes. As a starting point, ideal gas dynamic calculations for optimal facility design to maximize test time at a given Mach number test condition are presented, together with a correction for the expansion head reflection through a non-simple region. A compilation of practical limitations that have been identified for expansion tube facilities such as diaphragm rupture and flow disturbance minimization is then used to map out a functional design parameter space. Experimentally, a range of test conditions have been verified through pitot pressure measurements and analysis of schlieren images of flow over simple geometries. To date there has been good agreement between theoretical and experimental results

    Quantum Computer with Mixed States and Four-Valued Logic

    Full text link
    In this paper we discuss a model of quantum computer in which a state is an operator of density matrix and gates are general quantum operations, not necessarily unitary. A mixed state (operator of density matrix) of n two-level quantum systems is considered as an element of 4^n-dimensional operator Hilbert space (Liouville space). It allows to use a quantum computer model with four-valued logic. The gates of this model are general superoperators which act on n-ququat state. Ququat is a quantum state in a four-dimensional (operator) Hilbert space. Unitary two-valued logic gates and quantum operations for an n-qubit open system are considered as four-valued logic gates acting on n-ququat. We discuss properties of quantum four-valued logic gates. In the paper we study universality for quantum four-valued logic gates.Comment: 17 page

    Query Answering in Normal Logic Programs under Uncertainty

    Get PDF
    We present a simple, yet general top-down query answering procedure for normal logic programs over lattices and bilattices, where functions may appear in the rule bodies. Its interest relies on the fact that many approaches to paraconsistency and uncertainty in logic programs with or without non-monotonic negation are based on bilattices or lattices, respectively

    Query Answer Explanations under Existential Rules

    Get PDF
    Ontology-mediated query answering is an extensively studied paradigm, which aims at improving query answers with the use of a logical theory. In this paper, we focus on ontology languages based on existential rules, and we carry out a thorough complexity analysis of the problem of explaining query answers in terms of minimal subsets of database facts and related task
    corecore