729 research outputs found
Fredkin Gates for Finite-valued Reversible and Conservative Logics
The basic principles and results of Conservative Logic introduced by Fredkin
and Toffoli on the basis of a seminal paper of Landauer are extended to
d-valued logics, with a special attention to three-valued logics. Different
approaches to d-valued logics are examined in order to determine some possible
universal sets of logic primitives. In particular, we consider the typical
connectives of Lukasiewicz and Godel logics, as well as Chang's MV-algebras. As
a result, some possible three-valued and d-valued universal gates are described
which realize a functionally complete set of fundamental connectives.Comment: 57 pages, 10 figures, 16 tables, 2 diagram
Multimodality in Pervasive Environment
Future pervasive environments are expected to immerse users in a consistent
world of probes, sensors and actuators. Multimodal interfaces combined
with social computing interactions and high-performance networking can foster a
new generation of pervasive environments. However, much work is still needed to
harness the full potential of multimodal interaction. In this paper we discuss some
short-term research goals, including advanced techniques for joining and correlating
multiple data flows, each with its own approximations and uncertainty models.
Also, we discuss some longer term objectives, like providing users with a mental
model of their own multimodal "aura", enabling them to collaborate with the network
infrastructure toward inter-modal correlation of multimodal inputs, much in
the same way as the human brain extracts a single self-conscious experience from
multiple sensorial data flows
Design and Characterization of a Hypervelocity Expansion Tube Facility
We report on the design and characterization of a 152 mm diameter expansion tube capable of accessing a range of high enthalpy test conditions
with Mach numbers up to 7.1 for aerodynamic studies. Expansion tubes
have the potential to offer a wide range of test flow conditions as gas acceleration is achieved through interaction with an unsteady expansion wave
rather than expansion through a fixed area ratio nozzle. However, the range
of test flow conditions is in practice limited by a number of considerations
such as short test time and large amplitude flow disturbances. We present
a generalized design strategy for small-scale expansion tubes. As a starting
point, ideal gas dynamic calculations for optimal facility design to maximize
test time at a given Mach number test condition are presented, together
with a correction for the expansion head reflection through a non-simple
region. A compilation of practical limitations that have been identified for
expansion tube facilities such as diaphragm rupture and flow disturbance
minimization is then used to map out a functional design parameter space.
Experimentally, a range of test conditions have been verified through pitot
pressure measurements and analysis of schlieren images of flow over simple
geometries. To date there has been good agreement between theoretical
and experimental results
Quantum Computer with Mixed States and Four-Valued Logic
In this paper we discuss a model of quantum computer in which a state is an
operator of density matrix and gates are general quantum operations, not
necessarily unitary. A mixed state (operator of density matrix) of n two-level
quantum systems is considered as an element of 4^n-dimensional operator Hilbert
space (Liouville space). It allows to use a quantum computer model with
four-valued logic. The gates of this model are general superoperators which act
on n-ququat state. Ququat is a quantum state in a four-dimensional (operator)
Hilbert space. Unitary two-valued logic gates and quantum operations for an
n-qubit open system are considered as four-valued logic gates acting on
n-ququat. We discuss properties of quantum four-valued logic gates. In the
paper we study universality for quantum four-valued logic gates.Comment: 17 page
Query Answering in Normal Logic Programs under Uncertainty
We present a simple, yet general top-down query answering procedure for normal logic programs over lattices and bilattices, where functions may appear in the rule bodies. Its interest relies on the fact that many approaches to paraconsistency and uncertainty in logic programs with or without non-monotonic negation are based on bilattices or lattices, respectively
Query Answer Explanations under Existential Rules
Ontology-mediated query answering is an extensively studied paradigm, which aims at improving
query answers with the use of a logical theory. In this paper, we focus on ontology languages based on
existential rules, and we carry out a thorough complexity analysis of the problem of explaining query
answers in terms of minimal subsets of database facts and related task
- …
