66 research outputs found

    A variable active galactic nucleus at z = 2.06 triply-imaged by the galaxy cluster MACS J0035.4−2015

    Get PDF
    Support by grant 2020750 from the United States- Israel Binational Science Foundation (BSF) and grant 2109066 from the United States National Science Foundation (NSF), and by the Ministry of Science and Technology, Israel. J.C. acknowl- edges funding from the ‘FirstGalaxies’ Advanced Grant from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No. 789056). E.C.L. acknowledges support of an STFC Webb Fellowship (ST/W001438/1). K.K. acknowledges the support by JSPS KAKENHI Grant Number JP17H06130 and the NAOJ ALMA Scientific Research Grant Number 2017–06B. D.E. acknowledges support from a Beatriz Galindo senior fellowship (BG20/00224) from the Spanish Ministry of Science and Innovation, projects PID2020-114414GB-100 and PID2020-113689GB-I00 financed by MCIN/AEI/10.13039/501100011033, project P20-00334 financed by the Junta de Andaluc´ıa, and project A-FQM-510-UGR20 of the FEDER/Junta de Andaluc´ıa-Consejer´ıa de Transformaci ´on Econ ´omica, Industria, Conocimiento y Universidades. G.E.M. ac- knowledges financial support from the Villum Young Investiga- tor grant 37440 and 13160 and the The Cosmic Dawn Center (DAWN), funded by the Danish National Research Foundation under grant No. 140. F.E.B. acknowledges support from ANID- Chile BASAL CATA FB210003, FONDECYT Regular 1200495 and 1190818, and Millennium Science Initiative Program–ICN12 009. K.K.K. acknowledges support from the Knut and Alice Wallenberg Foundation.We report the discovery of a triply imaged active galactic nucleus (AGN), lensed by the galaxy cluster MACS J0035.4−2015 (z d = 0.352). The object is detected in Hubble Space Telescope imaging taken for the RELICS program. It appears to have a quasi-stellar nucleus consistent with a point-source, with a de-magnified radius of re ≲ 100 pc. The object is spectroscopically confirmed to be an AGN at z spec = 2.063 ± 0.005 showing broad rest-frame UV emission lines, and detected in both X-ray observations with Chandra and in ALCS ALMA band 6 (1.2 mm) imaging. It has a relatively faint rest-frame UV luminosity for a quasar-like object, MUV, 1450 = −19.7 ± 0.2. The object adds to just a few quasars or other X-ray sources known to be multiply lensed by a galaxy cluster. Some diffuse emission from the host galaxy is faintly seen around the nucleus, and there is a faint object nearby sharing the same multiple-imaging symmetry and geometric redshift, possibly an interacting galaxy or a star-forming knot in the host. We present an accompanying lens model, calculate the magnifications and time delays, and infer the physical properties of the source. We find the rest-frame UV continuum and emission lines to be dominated by the AGN, and the optical emission to be dominated by the host galaxy of modest stellar mass M✶ ≃ 109.2 M⊙. We also observe some variation in the AGN emission with time, which may suggest that the AGN used to be more active. This object adds a low-redshift counterpart to several relatively faint AGN recently uncovered at high redshifts with HST and JWST.Horizon 2020 Framework Programme H2020Consejería de Transformación Económica, Industria, Conocimiento y Universidades 13160, 37440Science and Technology Facilities Council ST/W001438/1 STFCEuropean Research Council ERCFondo Nacional de Desarrollo Científico y Tecnológico 1190818, 1200495, ICN12_009 FONDECYTMinisterio de Ciencia e Innovación MCIN/AEI/10.13039/501100011033, P20-00334, PID2020-113689GB-I00, PID2020-114414GB-100 MICINNHorizon 2020 789056European Regional Development Fund ERDFJunta de Andalucía A-FQM-510-UGR2

    Efficient survey design for finding high-redshift galaxies with JWST

    Full text link
    Several large JWST blank field observing programs have not yet discovered the first galaxies expected to form at 15z2015 \leq z \leq 20. This has motivated the search for more effective survey strategies that will be able to effectively probe this redshift range. Here, we explore the use of gravitationally lensed cluster fields, that have historically been the most effective discovery tool with HST. In this paper, we analyze the effectiveness of the most massive galaxy clusters that provide the highest median magnification factor within a single JWST NIRCam module in uncovering this population. The results of exploiting these lensing clusters to break the z>15z > 15 barrier are compared against the results from large area, blank field surveys such as JADES and CEERS in order to determine the most effective survey strategy for JWST. We report that the fields containing massive foreground galaxy clusters specifically chosen to occupy the largest fraction of a single NIRCam module with high magnification factors in the source plane, whilst containing all multiple images in the image plane within a single module provide the highest probability of both probing the 15z2015 \leq z \leq 20 regime, as well as discovering the highest redshift galaxy possible with JWST. We also find that using multiple massive clusters in exchange for shallower survey depths is a more time efficient method of probing the z>15z > 15 regime.Comment: 12 pages, 5 figure

    Unscrambling the lensed galaxies in JWST images behind SMACS0723

    Get PDF
    The first deep field images from the James Webb Space Telescope (JWST) of the galaxy cluster SMACS~J0723.3-7327 reveal a wealth of new lensed images at uncharted infrared wavelengths, with unprecedented depth and resolution. Here we securely identify 14 new sets of multiply imaged galaxies totalling 42 images, adding to the five sets of bright and multiply-imaged galaxies already known from Hubble Space Telescope data. We find examples of arcs crossing critical curves, allowing detailed community follow-up, such as JWST spectroscopy for precise redshift determinations, and measurements of the chemical abundances and of the detailed internal gas dynamics of very distant, young galaxies. One such arc contains compact knots of magnification μ\mu\sim750, and features a microlensed transient. We also detect an Einstein cross candidate only visible thanks to JWST's superb resolution. Our parametric lens model is available at https://www.dropbox.com/sh/gwup2lvks0jsqe5/AAC2RRSKce0aX-lIFCc9vhBXa?dl=0 , and will be regularly updated using additional spectroscopic redshifts. The model reproduces the multiple images to better than an rms of 0.50.5^{\prime \prime}, and allows for accurate magnification estimates of high-redshift galaxies. The intracluster light extends beyond the cluster members, exhibiting large-scale features that suggest a significant past dynamical disturbance. This work represents a first taste of the enhanced power JWST will have for lensing-related science.Comment: Submitted to ApJ. 13 pages, 6 figure

    A search for transients in the Reionization Lensing Cluster Survey (RELICS): Three new supernovae

    Get PDF
    The Reionization Cluster Survey (RELICS) imaged 41 galaxy clusters with the Hubble Space Telescope (HST), in order to detect lensed and high-redshift galaxies. Each cluster was imaged to about 26.5 AB mag in three optical and four near-infrared bands, taken in two distinct visits separated by varying time intervals. We make use of the multiple near-infrared epochs to search for transient sources in the cluster fields, with the primary motivation of building statistics for bright caustic crossing events in gravitational arcs. Over the whole sample, we do not find any significant (5σ\gtrsim5 \sigma) caustic crossing events, in line with expectations from semi-analytic calculations but in contrast to what may be naively expected from previous detections of some bright events, or from deeper transient surveys that do find high rates of such events. Nevertheless, we find six prominent supernova (SN) candidates over the 41 fields: three of them were previously reported and three are new ones reported here for the first time. Out of the six candidates, four are likely core-collapse (CC) SNe -- three in cluster galaxies, and among which only one was known before, and one slightly behind the cluster at z0.60.7z\sim0.6-0.7. The other two are likely Ia -- both of them previously known, one probably in a cluster galaxy, and one behind it at z2z\simeq2. Our study supplies empirical bounds for the rate of caustic crossing events in galaxy cluster fields to typical HST magnitudes, and lays the groundwork for a future SN rate study.Comment: Accepted for publication in MNRAS. 10 pages, 3 figure

    UNCOVERing the extended strong lensing structures of Abell 2744 with the deepest JWST imaging

    Full text link
    We present a new parametric lens model for the massive galaxy cluster Abell~2744 based on the new ultra-deep JWST imaging taken in the framework of the UNCOVER program. These observations constitute the deepest JWST images of a lensing cluster to date, adding to the existing deep Hubble Space Telescope (HST) images and the recent JWST ERS and DDT data taken for this field. The wide field-of-view of UNCOVER (45\sim45 arcmin2^2) extends beyond the cluster's well-studied central core and reveals a spectacular wealth of prominent lensed features around two massive cluster sub-structures in the north and north-west, where no multiple images were previously known. The 75 newly uncovered multiple images and candidates of 16 sources allow us, for the first time, to constrain the lensing properties and total mass distribution around these extended cluster structures using strong lensing (SL). Our model yields an effective Einstein radius of θE,main23\theta_{E,\mathrm{main}}\simeq23'' for the main cluster core (for zs=2z_{\mathrm{s}}=2), enclosing a mass of M(θ<θE,main)7.7×1013M(\theta<\theta_{E,\mathrm{main}})\simeq7.7\times10^{13} M_{\odot}, and θE,NW13\theta_{E,\mathrm{NW}}\simeq13'' for the newly discovered north-western SL structure enclosing M(θ<θE,NW)2.2×1013M(\theta<\theta_{E,\mathrm{NW}})\simeq2.2\times10^{13} M_{\odot}. The northern clump is somewhat less massive with θE,N7\theta_{E,\mathrm{N}}\simeq7'' enclosing M(θ<θE,N)8×1012M(\theta<\theta_{E,\mathrm{N}})\simeq8\times10^{12} M_{\odot}. We find the northern sub-structures of Abell~2744 to broadly agree with the findings from weak lensing (WL) and align with the filamentary structure found by these previous studies. Our model in particular reveals a large area of high magnifications between the various cluster structures, which will be paramount for lensed galaxy studies in the UNCOVER field. The model is made publicly available to accompany the first UNCOVER data release.Comment: Accepted for publication in MNRAS. Updated to match the published versio

    Quantifying the Effects of Known Unknowns on Inferred High-redshift Galaxy Properties: Burstiness, the IMF, and Nebular Physics

    Full text link
    The era of the James Webb Space Telescope ushers stellar populations models into uncharted territories, particularly at the high-redshift frontier. In a companion paper, we apply the \texttt{Prospector} Bayesian framework to jointly infer galaxy redshifts and stellar populations properties from broad-band photometry as part of the UNCOVER survey. Here we present a comprehensive error budget in spectral energy distribution (SED) modeling. Using a zphot>9z_{\rm phot}>9 sample, we quantify the systematic shifts stemming from various model choices in inferred stellar mass, star formation rate (SFR), and age. These choices encompass different timescales for changes in the star formation history (SFH), non-universal stellar initial mass functions (IMF), and the inclusion of variable nebular abundances, gas density and ionizing photon budget. We find that the IMF exerts the strongest influence on the inferred properties: the systematic uncertainties can be as much as 1 dex, 2--5 times larger than the formal reported uncertainties in mass and SFR; and importantly, exceed the scatter seen when using different SED fitting codes. This means that a common practice in the literature of assessing uncertainties in SED-fitting processes by comparing multiple codes is substantively underestimating the true systematic uncertainty. Highly stochastic SFHs change the inferred SFH by much larger than the formal uncertainties, and introduce 0.8\sim 0.8 dex systematics in SFR and 0.3\sim 0.3 dex systematics in average age. Finally, employing a flexible nebular emission model causes 0.2\sim 0.2 dex systematic increase in mass, comparable to the formal uncertainty. This paper constitutes one of the initial steps toward a complete uncertainty estimate in SED modeling.Comment: Submitted to ApJ. 18 pages, 8 figures, 2 table

    JWST UNCOVER: Discovery of z>9z>9 Galaxy Candidates Behind the Lensing Cluster Abell 2744

    Full text link
    We present the results of a search for high-redshift (z>9z>9) galaxy candidates in the JWST UNCOVER survey, using deep NIRCam and NIRISS imaging in 7 bands over 45\sim45 arcmin2^2 and ancillary HST observations. The NIRCam observations reach a 5σ5-\sigma limiting magnitude of 29.2\sim 29.2 AB. The identification of highz-z candidates relies on a combination of a dropout selection and photometric redshifts. We find 16 candidates at 9<z<129<z<12 and 3 candidates at 12<z<1312<z<13, eight candidates are deemed very robust. Their lensing amplification ranges from μ=1.2\mu=1.2 to 11.5. Candidates have a wide range of (lensing-corrected) luminosities and young ages, with low stellar masses (6.8<6.8< log(M_{\star}/M_{\odot}) <9.5<9.5) and low star formation rates (SFR=0.2-7 M_{\odot} yr1^{-1}), confirming previous findings in early JWST observations of z>9z>9. A few galaxies at z910z\sim9-10 appear to show a clear Balmer break between the F356W and F444W/F410M bands, which helps constrain their stellar mass. We estimate blue UV continuum slopes between β=1.8\beta=-1.8 and 2.3-2.3, typical for early galaxies at z>9z>9 but not as extreme as the bluest recently discovered sources. We also find evidence for a rapid redshift-evolution of the mass-luminosity relation and a redshift-evolution of the UV continuum slope for a given range of intrinsic magnitude, in line with theoretical predictions. These findings suggest that deeper JWST observations are needed to reach the fainter galaxy population at those early epochs, and follow-up spectroscopy will help better constrain the physical properties and star formation histories of a larger sample of galaxies.Comment: Submitted to MNRA

    UNCOVER: Illuminating the Early Universe -- JWST/NIRSpec Confirmation of z>12z > 12 Galaxies

    Full text link
    Observations of high-redshift galaxies provide a critical direct test to the theories of early galaxy formation, yet to date, only four have been spectroscopically confirmed at z>12z>12. Due to strong gravitational lensing over a wide area, the galaxy cluster field Abell~2744 is ideal for searching for the earliest galaxies. Here we present JWST/NIRSpec observations of two galaxies: a robust detection at zspec=12.3930.001+0.004z_{\rm spec} = 12.393^{+0.004}_{-0.001}, and a plausible candidate at zspec=13.0790.001+0.013z_{\rm spec} = 13.079^{+0.013}_{-0.001}. The galaxies are discovered in JWST/NIRCam imaging and their distances are inferred with JWST/NIRSpec spectroscopy, all from the JWST Cycle 1 UNCOVER Treasury survey. Detailed stellar population modeling using JWST NIRCam and NIRSpec data corroborates the primeval characteristics of these galaxies: low mass (108 M\sim 10^8~{\rm M_\odot}), young, rapidly-assembling, metal-poor, and star-forming. Interestingly, both galaxies are spatially resolved, having lensing-corrected rest-UV effective radii on the order of 300-400 pc, which are notably larger than other spectroscopically confirmed z12z \gtrsim 12 systems. The observed dynamic range of z12z \gtrsim 12 size spans over an order of magnitude, implying a significant scatter in the size-mass relation at early times. Deep into the epoch of reionization, these discoveries elucidate the emergence of the first galaxies.Comment: submitted to ApJL; 13 pages, 4 figures, 2 table

    High-Redshift Galaxy Candidates at z=913z = 9-13 as Revealed by JWST Observations of WHL0137-08

    Get PDF
    JWST was designed to peer into the distant universe and study galaxies nearer the beginning of time than previously. Here we report the discovery of 12 galaxy candidates observed 300-600 Myr after the Big Bang with photometric redshifts between z ~ 8.5-13 measured using JWST NIRCam imaging of the galaxy cluster WHL0137 observed in 8 filters spanning 0.8-5.0 μ\mum, plus 9 HST filters spanning 0.4-1.7 μ\mum. Three of these candidates are gravitationally lensed by the foreground galaxy cluster and have magnifications of μ38\mu \sim 3 - 8. The remaining nine candidates are located in a second JWST NIRCam module, centered ~29' from the cluster center, with expected magnifications of μ\mu <~ 1.1. Our sample of high-redshift candidates have observed F200W AB magnitudes between 25.9 and 28.1 mag and intrinsic F200W AB magnitudes between 26.4 and 29.7 mag (MUVM_{UV} = -22.5 to -17). We find the stellar masses of these galaxies are in the range logM/M\log M_{*}/M_{\odot} = 8 - 9, and down to 7.5 for the lensed galaxies. All are young with mass-weighted ages < 100 Myr, low dust content AVA_V < 0.15 mag, and high specific star formation rates sSFR ~10-50 Gyr1^{-1} for most. One z ~ 9 candidate is consistent with an age < 5 Myr and a sSFR ~250 Gyr1^{-1}, as inferred from a strong F444W excess, implying [OIII]+H-beta rest-frame equivalent width ~2000 Angstrom, although an older and redder z~ 10 object is also allowed. Another z~9 candidate ID9356 is lensed into an arc 2.6" long by the effects of strong gravitational lensing (μ\mu~8), and has at least two bright knots of unevenly distributed star formation. This arc is the most spatially-resolved galaxy at z~9 known to date, revealing structures ~30 pc across. Follow-up spectroscopy of WHL0137 with JWST/NIRSpec is planned for later this year, which will validate some of these candidates and study their physical properties in more detail.Comment: submitted to Ap
    corecore