21 research outputs found

    In situ characterization of tantalum based barrier films

    Get PDF
    Als eine Folge der Miniaturisierung aller integrierten elektrischen Bauteile wird der spezifische Widerstand der TaN/Ta Doppelsperrschichten ein zunehmend wichtiger Parameter für die Schaltgeschwindigkeit beim 32 nm Technologieknoten. In Rahmen dieser Arbeit wird die Optimierung der Abscheidung von TaN/Ta Stapeln durchgeführt, mit dem Ziel die Tantalnitridschichtdicke zu minimieren und das Tantal in der leitfähigeren alpha-Phase wachsen zu lassen. Im ersten Teil der Studie wurde in situ ARXPS verwendet, um das Wachstum von verschiedenen Tantalnitridschichten auf SiO2 und SiCOH in Abhängigkeit der Abscheidezeit, des Stickstoffflusses und der Abscheideleistung zu untersuchen. Im zweiten Teil wurde die kristalline Phase 20 nm dicken Tantal Schichten abgeschieden auf verschiedenen Tantalnitridschichten, die in der Wachstumsstudie vorgestellt worden sind, untersucht. Die wichtigsten Erkenntnisse sind das Auftreten von Tantalkarbid und Tantalsilizid als Zwischenschichtverbindungen bei der Abscheidung auf SiCOH und nur Tantalsilizid für die Abscheidung auf SiO2. Demzufolge wächst alpha-Tantal vorzugsweise auf Tantalkarbid und stickstoffreichen Zwischenschichten, während Silizid an der Schnittstelle das Wachstum von beta-Tantal fördert. Um die Ergebnisse zu überprüfen, wurden zwei weitere Modifikationen des Interfaces untersucht. So wurde eine kleinere Bias-Leistung für eine Abscheidung von Tantalnitrid auf SiO2 benutzt, um die Rolle des Tantalsilizids zu bestätigen. Außerdem wurde eine thermische Behandlung einer dünnen Tantalschicht auf SiCOH durchgeführt, um die Rolle des Tantalkarbids zu bestätigen. Schließlich ergab die Kontaktwiderstandsmessung in Viaketten auf strukturierten Wafern für vier ausgewählte Prozesse tendenziell den gleichen Verlauf wie die Schichtwiderstandsergebnisse der entsprechenden Barrierenaufbauten der Experimente auf blanken Testwafern.As a consequence of device shrinking the resistivity of the widely used TaN/Ta double barrier layer becomes an increasingly important parameter for device speed beyond the 32nm technology node. In this study the optimization of the deposition of TaN/Ta stacks was performed in such a way that tantalum nitride layer thickness is minimized and tantalum grows in the favorable conducting alpha-phase. In the first part of the study in situ ARXPS was used to investigate the growth of different tantalum nitride layers on SiO2 and SiOCH as a function of deposition time, nitrogen flow and deposition power. In the second part the crystalline phase of 20 nm thick tantalum layers deposited on top of the same series of tantalum nitride layers characterized in the growth study was analyzed. The main findings are the appearance of tantalum carbide and tantalum silicide as interface species for the deposition on SiOCH and only tantalum silicide for the deposition on SiO2. So alpha-tantalum grows preferably on tantalum carbide and nitrogen rich intermediate layers whereas silicide at the interface promotes the growth of beta-tantalum. To verify these findings two additional modifications of the interface were studied. A lower bias power for a deposition of tantalum nitride on SiO2 was used to confirm the role of tantalum silicide and a thermal treatment of a thin tantalum layer on SiOCH was applied to confirm the role of tantalum carbide. Finally, the contact resistance in via chains on patterned wafers for four selected processes showed the same trends as the sheet resistance of the corresponding barrier films on blanket wafer experiments

    Profiling DNA damage response following mitotic perturbations

    Get PDF
    Genome integrity relies on precise coordination between DNA replication and chromosome segregation. Whereas replication stress attracted much attention, the consequences of mitotic perturbations for genome integrity are less understood. Here, we knockdown 47 validated mitotic regulators to show that a broad spectrum of mitotic errors correlates with increased DNA breakage in daughter cells. Unexpectedly, we find that only a subset of these correlations are functionally linked. We identify the genuine mitosis-born DNA damage events and sub-classify them according to penetrance of the observed phenotypes. To demonstrate the potential of this resource, we show that DNA breakage after cytokinesis failure is preceded by replication stress, which mounts during consecutive cell cycles and coincides with decreased proliferation. Together, our results provide a resource to gauge the magnitude and dynamics of DNA breakage associated with mitotic aberrations and suggest that replication stress might limit propagation of cells with abnormal karyotypes.This work was supported by the Novo Nordisk Foundation (NNF14CC0001 to J.L. and NNF12OC0002088 to C.L.), Danish Cancer Society (R72-A4436 to J.L.), the European Community 6th Framework Programme MitoCheck (LSHG-CT-2004-503464 to J.E.) and European Community 7th Framework Program MitoSys (241548 to J.E.).Peer Reviewe

    Research campaign : macroscopic quantum resonators (MAQRO)

    Get PDF
    The objective of the proposed macroscopic quantum resonators (MAQRO) mission is to harness space for achieving long free-fall times, extreme vacuum, nano-gravity, and cryogenic temperatures to test the foundations of physics in macroscopic quantum experiments at the interface with gravity. Developing the necessary technologies, achieving the required sensitivities and providing the necessary isolation of macroscopic quantum systems from their environment will lay the path for developing novel quantum sensors. Earlier studies showed that the proposal is feasible but that several critical challenges remain, and key technologies need to be developed. Recent scientific and technological developments since the original proposal of MAQRO promise the potential for achieving additional science objectives. The proposed research campaign aims to advance the state of the art and to perform the first macroscopic quantum experiments in space. Experiments on the ground, in micro-gravity, and in space will drive the proposed research campaign during the current decade to enable the implementation of MAQRO within the subsequent decade

    Organosilane Downstream Plasma On Ultra Low-k Dielectrics: Comparing Repair With Post Etch Treatment: Organosilane Downstream Plasma On Ultra Low-k Dielectrics:Comparing Repair With Post Etch Treatment

    No full text
    Plasma induced damage of ultra low-k (ULK) dielectrics is a common phenomenon in BEOL interconnects. The damage leads to an increase in k-value, which raises the RC delay, leading to increased power consumption and cross talk noise. Therefore, diverse repair and post etch treatments (PET) have been proposed to restore or reduce the ULK damage. However, current repair processes are usually based on non-plasma silylation, which suffers from limited chemistry diffusion into the ULK. Moreover, the conventional PET based on anisotropic plasma results in bottom vs. sidewall inhomogeneities of the structures (e.g. via and trench). To reduce these drawbacks, an organosilane downstream -plasma (DSP) was applied. This new application resulted in an increased resistance to ULK removal by fluorinated wet clean chemistries, preserving the ULK hydrophobicity, keeping its carbon content relatively high. The effective RC measured on 28 nm node patterned wafers treated with a DSP PET remains nevertheless comparable to the process of record (POR)

    Quantum-Assisted Measurement of Atomic Diamagnetism

    No full text
    We report the first measurement of ground-state diamagnetism of isolated neutral atoms in an atomic beam. We realize this measurement using magnetic deflection of fringes in a long-baseline matter-wave interferometer. The observed diamagnetic susceptibilities of −5.8±0.2±0.4×10^{−9}  m^{3}/kg for barium and −7.0±0.3±0.7×10^{−9}  m^{3}/kg for strontium are in good agreement with the theoretical values and correspond to a measured force on the order of 10^{−26}  N. The high force sensitivity also allows us to observe the isotope dependence of the interference visibility due to the nuclear permanent magnetic moment, thereby demonstrating a new method for neutral isotope selection. The universality of the technique allows the magnetism of a wide range of atoms and molecules to be studied in the gas phase

    An In Vitro Model to Investigate the Potential of Solid Dispersions to Form Pharmacobezoars

    No full text
    The formation of pharmacobezoars from suspensions of spray-dried amorphous solid dispersions (SD-ASDs) of new chemical entities (NCEs) and hydroxypropyl methylcellulose acetate succinate (HPMC-AS) represents a non-compound related adverse effect in preclinical oral toxicity studies in rodents. Whereas the contribution of the insolubility of the carrier polymer to this process taking place in the acidic environment of the rodent stomach is conclusive, unawareness of the extent of in vivo pharmacobezoar formation is adverse. In order to evaluate the risk of pharmacobezoar formation before in vivo administration, we subsequently introduce an in vitro model to assess the agglomeration potential of solid dispersions. To verify that the pharmacobezoar formation potential can be assessed based on the observed agglomeration potential, we conducted a sequence of experiments with two HPMC-AS-based SD-ASD formulations. In vitro, we found their different in vivo pharmacobezoar formation potential reflected by a significantly increased agglomerated mass of formulation 1 per day compared to formulation 2. In order to find an approach to reduce the agglomeration potential of solid dispersion from suspensions, we further applied the model to investigate the impact of the viscosity of the vehicle used to prepare suspensions on agglomerate formation

    BEoL post CMP cleaning challenges for 22 nm FD-SOI and beyond

    No full text
    In this paper we discuss the different behaviors of four state-of-the-art post CMP cleaning chemistries with respect to cleaning performance, wafer surface properties and electrical performance. The wafer surface properties include roughness and material composition evaluation. In addition to the commonly done investigation of the cleaning performance of the chemistries, analysis like XPS and SEM of post CMP wafer surfaces were performed and a correlation between the properties of the chemistry and the resulting wafer properties is discussed. A significant difference in the kind of carbon bonding on the Cu surface as well as the resulting sulfur residues on the wafers were observed for the different chemistries that were tested. Furthermore, stress tests of the Cu surface revealed different etch damages for the different chemistries. It is also shown that the interaction of cleaning chemistry with wafer surface can cause a decrease in the breakdown voltage inside the BEoL stack. Finally, a comparison of the advantages and disadvantages of the tested chemistries is given and in conclusion, the identified properties of each chemistry are assessed with regard to manufacturability

    Thermal ALD of Cu via Reduction of CuxO films for the Advanced Metallization in Spintronic and ULSI Interconnect Systems

    Get PDF
    In this work, an approach for copper atomic layer deposition (ALD) via reduction of CuxO films was investigated regarding applications in ULSI interconnects, like Cu seed layers directly grown on diffusion barriers (e. g. TaN) or possible liner materials (e. g. Ru or Ni) as well as non-ferromagnetic spacer layers between ferromagnetic films in GMR sensor elements, like Ni or Co. The thermal CuxO ALD process is based on the Cu (I) β-diketonate precursor [(nBu3P)2Cu(acac)] and a mixture of water vapor and oxygen ("wet O2") as co-reactant at temperatures between 100 and 130 °C. Highly efficient conversions of the CuxO to metallic Cu films are realized by a vapor phase treatment with formic acid (HCOOH), especially on Ru substrates. Electrochemical deposition (ECD) experiments on Cu ALD seed / Ru liner stacks in typical interconnect patterns are showing nearly perfectly filling behavior. For improving the HCOOH reduction on arbitrary substrates, a catalytic amount of Ru was successful introduced into the CuxO films during the ALD with a precursor mixture of the Cu (I) β-diketonate and an organometallic Ru precursor. Furthermore, molecular and atomic hydrogen were studied as promising alternative reducing agents
    corecore