9 research outputs found

    Combustion Visualisation Monitoring Using High Speed Imaging

    Get PDF
    Optical visualisation of flames plays an important role in the in-depth understanding of complex combustion phenomena. In particular, a high-speed camera can provide nonintrusive and continuous monitoring of flames. Through the recorded images, further analysis on colour, temperature, flame dynamics, and a variety of other information can be achieved, which is essential for physical study and numerical modelling. The main objectives of the present work are to apply visualisation monitoring to different combustion conditions, quantitatively analyse the combustion performance, and integrate these analyses with their inherent nature to achieve physical insights into these combustion phenomena. Overall, this work improves the understanding of combustion, and contributes towards the development of tools for flame performance analysis and evaluation. These benefits could be crucial for future fuels and engines

    Combined Connectomics, MAPT Gene Expression, and Amyloid Deposition to Explain Regional Tau Deposition in Alzheimer Disease

    Get PDF
    Objective We aimed to test whether region-specific factors, including spatial expression patterns of the tau-encoding gene MAPT and regional levels of amyloid positron emission tomography (PET), enhance connectivity-based modeling of the spatial variability in tau-PET deposition in the Alzheimer disease (AD) spectrum. Methods We included 685 participants (395 amyloid-positive participants within AD spectrum and 290 amyloid-negative controls) with tau-PET and amyloid-PET from 3 studies (Alzheimer's Disease Neuroimaging Initiative, 18F-AV-1451-A05, and BioFINDER-1). Resting-state functional magnetic resonance imaging was obtained in healthy controls (n = 1,000) from the Human Connectome Project, and MAPT gene expression from the Allen Human Brain Atlas. Based on a brain-parcellation atlas superimposed onto all modalities, we obtained region of interest (ROI)-to-ROI functional connectivity, ROI-level PET values, and MAPT gene expression. In stepwise regression analyses, we tested connectivity, MAPT gene expression, and amyloid-PET as predictors of group-averaged and individual tau-PET ROI values in amyloid-positive participants. Results Connectivity alone explained 21.8 to 39.2% (range across 3 studies) of the variance in tau-PET ROI values averaged across amyloid-positive participants. Stepwise addition of MAPT gene expression and amyloid-PET increased the proportion of explained variance to 30.2 to 46.0% and 45.0 to 49.9%, respectively. Similarly, for the prediction of patient-level tau-PET ROI values, combining all 3 predictors significantly improved the variability explained (mean adjusted R2 range across studies = 0.118–0.148, 0.156–0.196, and 0.251–0.333 for connectivity alone, connectivity plus MAPT expression, and all 3 modalities combined, respectively). Interpretation Across 3 study samples, combining the functional connectome and molecular properties substantially enhanced the explanatory power compared to single modalities, providing a valuable tool to explain regional susceptibility to tau deposition in AD. ANN NEUROL 202

    Serum microRNA miR-491-5p/miR-206 Is Correlated with Poor Outcomes/Spontaneous Hemorrhagic Transformation after Ischemic Stroke: A Case Control Study

    No full text
    Background: It is unclear whether miR-491-5p, miR-206, miR-21-5p or miR-3123 are associated with functional outcomes and hemorrhagic transformation (HT) after acute ischemic stroke (AIS). In this study, we aimed to investigate the correlation between these four microRNAs and functional outcomes, as well as spontaneous HT after AIS; Methods: We included 215 AIS patients and retrospectively assayed for miR-21-5p, miR-206, miR-3123 and miR-491-5p levels in serum. Poor functional outcome was defined as a modified Rankin Scale score ≥ 3. Spontaneous HT referred to hemorrhage detected in follow-up brain imaging but not on admission, without reperfusion therapies. Logistic regression, generalized additive model and 2-piecewise regression model were used to explore the independent, non-linear correlation between miRNA expression levels and outcomes; Results: We included 215 AIS patients. Higher miR-491-5p level independently reduced the risk of poor functional outcomes at 1 year (OR 0.90, 95% CI 0.82–0.98, corrected p value = 0.044). Higher miR-206 level significantly increased the risk of spontaneous HT (OR 1.64, 95% CI 1.17–2.30, corrected p value = 0.016). There was a nonlinear correlation found between miR-491-5p level and 1 year outcome with an inflection point of 2.180, while an approximately linear correlation was observed with an inflection point of 2.037 between miR-206 level and spontaneous HT; Conclusions: Higher serum miR-491-5p level independently reduced risk of 1-year poor functional outcome of AIS patients. Higher serum miR-206 level independently increased the risk of spontaneous HT in AIS patients. These two miRNAs may be as the potential biomarkers for improving prognosis after AIS
    corecore