40 research outputs found

    Glycine N-methyltransferases: A comparison of the crystal structures and kinetic properties of recombinant human, mouse and rat enzymes

    Get PDF
    Glycine N-methyltransferases (GNMTs) from three mammalian sources were compared with respect to their crystal structures and kinetic parameters. The crystal structure for the rat enzyme was published previously. Human and mouse GNMT were expressed in Escherichia coli in order to determine their crystal structures. Mouse GNMT was crystallized in two crystal forms, a monoclinic form and a tetragonal form. Comparison of the three structures reveals subtle differences, which may relate to the different kinetic properties of the enzymes. The flexible character of several loops surrounding the active site, along with an analysis of the active site boundaries, indicates that the observed conformations of human and mouse GNMTs are more open than that of the rat enzyme. There is an increase in kcat when going from rat to mouse to human, suggesting a correlation with the increased flexibility of some structural elements of the respective enzymes. © 2004 Wiley-Liss, Inc

    Differences in folate-protein interactions result in differing inhibition of native rat liver and recombinant glycine N-methyltransferase by 5-methyltetrahydrofolate

    Get PDF
    Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinant protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme. © 2011 Elsevier B.V. All rights reserved

    Folate in demethylation: The crystal structure of the rat dimethylglycine dehydrogenase complexed with tetrahydrofolate

    Get PDF
    Dimethylglycine dehydrogenase (DMGDH) is a mammalian mitochondrial enzyme which plays an important role in the utilization of methyl groups derived from choline. DMGDH is a flavin containing enzyme which catalyzes the oxidative demethylation of dimethylglycine in vitro with the formation of sarcosine (N-methylglycine), hydrogen peroxide and formaldehyde. DMGDH binds tetrahydrofolate (THF) in vivo, which serves as an acceptor of formaldehyde and in the cell the product of the reaction is 5,10-methylenetetrahydrofolate instead of formaldehyde. To gain insight into the mechanism of the reaction we solved the crystal structures of the recombinant mature and precursor forms of rat DMGDH and DMGDH-THF complexes. Both forms of DMGDH reveal similar kinetic parameters and have the same tertiary structure fold with two domains formed by N- and C-terminal halves of the protein. The active center is located in the N-terminal domain while the THF binding site is located in the C-terminal domain about 40 Å from the isoalloxazine ring of FAD. The folate binding site is connected with the enzyme active center via an intramolecular channel. This suggests the possible transfer of the intermediate imine of dimethylglycine from the active center to the bound THF where they could react producing a 5,10- methylenetetrahydrofolate. Based on the homology of the rat and human DMGDH the structural basis for the mechanism of inactivation of the human DMGDH by naturally occurring His109Arg mutation is proposed. ©2014 Elsevier Inc. All rights reserved

    5-Methyltetrahydrofolate is bound in intersubunit areas of rat liver folate-binding protein glycine N-methyltransferase

    Get PDF
    Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. It is abundant in the liver, where it uses excess S-adenosylmethionine (AdoMet) to methylate glycine to N-methylglycine (sarcosine) and produces S-adenosylhomocysteine (AdoHcy), thereby controlling the methylating potential of the cell. GNMT also links utilization of preformed methyl groups, in the form of methionine, to their de novo synthesis, because it is inhibited by a specific form of folate, 5-methyltetrahydrofolate. Although the structure of the enzyme has been elucidated by x-ray crystallography of the apoenzyme and in the presence of the substrate, the location of the folate inhibitor in the tetrameric structure has not been identified. We report here for the first time the crystal structure of rat GNMT complexed with 5-methyltetrahydrofolate. In the GNMT-folate complex, two folate binding sites were located in the intersubunit areas of the tetramer. Each folate binding site is formed primarily by two 1-7 N-terminal regions of one pair of subunits and two 205-218 regions of the other pair of subunits. Both the pteridine and p-aminobenzoyl rings are located in the hydrophobic cavities formed by Tyr 5, Leu207, and Met215 residues of all subunits. Binding experiments in solution also confirm that one GNMT tetramer binds two folate molecules. For the enzymatic reaction to take place, the N-terminal fragments of GNMTmust have a significant degree of conformational freedom to provide access to the active sites. The presence of the folate in this position provides a mechanism for its inhibition

    Fatty liver and fibrosis in glycine N-methyltransferase knockout mice is prevented by nicotinamide

    Get PDF
    Deletion of glycine N-methyltransferase (GNMT) in mice, the main gene involved in liver S-adenosylmethionine (SAMe) catabolism, leads to the hepatic accumulation of this molecule and the development of fatty liver and fibrosis. To demonstrate that the excess of hepatic SAMe is the main agent contributing to liver disease in GNMT-KO mice, we treated 1.5-month old GNMT-KO mice for 6 weeks with nicotinamide (NAM), a substrate of the enzyme NAM N-methyltransferase. NAM administration markedly reduced hepatic SAMe content, prevented DNA-hypermethylation and normalized the expression of critical genes involved in fatty acid metabolism, oxidative stress, inflammation, cell proliferation, and apoptosis. More important, NAM treatment prevented the development of fatty liver and fibrosis in GNMT-KO mice. Because GNMT expression is down-regulated in patients with cirrhosis and there are subjects with GNMT mutations who have spontaneous liver disease, the clinical implication of the present findings is obvious at least with respect to these latter individuals. Especially since NAM has been used for many years to treat a broad spectrum of diseases including pellagra and diabetes without significant side effects, it should be considered in subjects with GNMT mutations.ConclusionsThese results indicate that the anomalous accumulation of SAMe in GNMT-KO mice can be corrected by NAM treatment leading to the normalization of the expression of many genes involved in fatty acid metabolism, oxidative stress, inflammation, cell proliferation and apoptosis, and to the reversion of the appearance of the pathologic phenotype

    S-adenosylmethionine Levels Regulate the Schwann Cell DNA Methylome

    Get PDF
    SummaryAxonal myelination is essential for rapid saltatory impulse conduction in the nervous system, and malformation or destruction of myelin sheaths leads to motor and sensory disabilities. DNA methylation is an essential epigenetic modification during mammalian development, yet its role in myelination remains obscure. Here, using high-resolution methylome maps, we show that DNA methylation could play a key gene regulatory role in peripheral nerve myelination and that S-adenosylmethionine (SAMe), the principal methyl donor in cytosine methylation, regulates the methylome dynamics during this process. Our studies also point to a possible role of SAMe in establishing the aberrant DNA methylation patterns in a mouse model of diabetic neuropathy, implicating SAMe in the pathogenesis of this disease. These critical observations establish a link between SAMe and DNA methylation status in a defined biological system, providing a mechanism that could direct methylation changes during cellular differentiation and in diverse pathological situations
    corecore