13 research outputs found

    Implementation of PPP as new GNSS Observation Type in the Geomonitoring System GOCA

    Full text link
    [EN] Early detection of significant movements in both natural and artificial structures is crucial to prevent human, environmental and economic losses. For this reason, Geomonitoring in an active field. GNSS technics are also a filed in which lot of research and improvement have been made in recent years. Some studies have indicated the potential of GNSS technics in the field of Geomonitoring. The aim of this master thesis is developing a software that allows processing GNSS data with Precise Point Positioning technic in the context of the geomonitoring project GOCA. With this implementation, potential of PPP with low cost receiver (U-Blox ZED-F9P) using different products and settings is evaluated in this document. Based on a literature review, that includes the study of GOCA project and a summary of main PPP approaches, a C++ dialog-based software was design and developed, using RTKLIB and WaPPP as software engines. Besides that, two different observations were made (one 12 hours to post-processing and one real time) in order to test the developed software and evaluate the obtained results using different parameters or products. The obtained results reaffirm the potential of the PPP technique, even using low cost receiver. Even some differences between different software engines or IGS products were found, the results allow us to conclude that PPP is a technique with many advantages in the field of geomonitoring, since it avoids the use of several receivers and good accuracies are obtained. However, some aspects need further research in this context, as there is no common criterion for establishing convergence time and new methodologies and algorithms are being developed in the field of PPP processing.[ES] La detección temprana de movimientos significativos en estructuras naturales y artificiales es crucial para prevenir pérdidas humanas, ambientales y económicas. Por esta razón, Geomonitorización es un campo activo. Las técnicas de GNSS son también un campo en el que se han realizado muchas investigaciones y mejoras en los últimos años. Algunos estudios han indicado el potencial de las técnicas GNSS en el campo de la geomonitorización. El objetivo de esta tesis de máster es desarrollar un software que permita el procesamiento de datos GNSS con la técnica de posicionamiento de punto preciso en el contexto del proyecto de geomonitorización GOCA. Con esta implementación, el potencial del PPP con el receptor de bajo coste (U-Blox ZED-F9P) usando diversos productos y configuraciones se va a evalúar en este documento. Basado en una revisión de la literatura, que incluye el estudio del proyecto GOCA y un resumen de los principales enfoques PPP, se diseñó y desarrolló un software basado en diálogos C++, utilizando RTKLIB y WaPPP como motores de software. Además, se realizaron dos observaciones diferentes (una de 12 horas para el post-procesamiento y otra en tiempo real) con el fin de probar el software desarrollado y evaluar los resultados obtenidos utilizando diferentes parámetros o productos. Los resultados obtenidos reafirman el potencial de la técnica PPP, incluso utilizando un receptor de bajo coste. Incluso habiendo encontrado algunas diferencias entre diferentes motores de software o productos IGS, los resultados nos permiten concluir que PPP es una técnica con muchas ventajas en el campo de la geomonitorización, ya que evita el uso de varios receptores y se obtienen buenas precisiones. Sin embargo, algunos aspectos necesitan más investigación en este contexto, ya que no existe un criterio común para establecer el tiempo de convergencia y se están desarrollando nuevas metodologías y algoritmos en el campo del procesamiento PPP.Luján García Muñoz, R. (2020). Implementation of PPP as new GNSS Observation Type in the Geomonitoring System GOCA. http://hdl.handle.net/10251/139668TFG

    Distanciometría GNSS para metrología y control de deformaciones

    Full text link
    [ES] La determinación absoluta de distancias al aire libre con una incertidumbre de décimas de milímetro es objeto de creciente interés en campos como la metrología, proyectos de ingeniería singulares o monitorización de deformaciones en sitios críticos. Para ello, se han empleado tradicionalmente distanciómetros electrónicos de alta precisión como el Kern ME5000. Debido a que este tipo de instrumentos ya no se fabrica, es necesario buscar otras vías para la obtención de distancias al aire libre de alta precisión, como el uso de GNSS. En el presente documento se plantea la posibilidad de utilizar para este fin la tecnología GNSS, junto con software ya existente, realizando un estudio comparativo entre resultados obtenidos mediante el ME500 y observaciones GNSS en la base de calibración de la UPV.[EN] The absolute determination of open air distances with an uncertainty of a few tenths of a millimeter is an object of increasing interest in fields such as metrology, singular engineering projects or deformation monitoring in critical sites. For this purpose, high precision electronic distance meters such as the Kern ME5000 have been traditionally used. Because this type of instrument is no longer manufactured, it is necessary to look for other ways to obtain high-precision outdoor distances, such as the use of GNSS. This document explores the possibility of using the GNSS technology for this purpose, using existing software, carring out a comparative study between results obtained by the ME5000 and GNSS observations in the UPV calibration baseline. The results obtained allow us to corroborate the potential of the GNSS technology for the determination of high precision distances.Luján García Muñoz, R. (2017). Distanciometría GNSS para metrología y control de deformaciones. Universitat Politècnica de València. http://hdl.handle.net/10251/86247TFG

    Python software tools for GNSS interferometric reflectometry (GNSS-IR)

    Full text link
    [EN] Global Navigation Satellite System (GNSS) interferometric reflectometry, also known as the GNSS-IR, uses data from geodetic-quality GNSS antennas to extract information about the environment surrounding the antenna. Soil moisture moni-toring is one of the most important applications of the GNSS-IR technique. This manuscript presents the main ideas and implementation decisions needed to write the Python code for software tools that transform RINEX format observation and navigation files into an appropriate format for GNSS-IR (which includes the SNR observations and the azimuth and elevation of the satellites) and to determine the reflection height and the adjusted phase and amplitude values of the interferometric wave for each individual satellite track. The main goal of the manuscript is to share the software with the scientific com-munity to introduce new users to the GNSS-IR technique.The authors want to thank the staff of the Cajamar Center of Experiences, and especially Carlos Baixauli, for their support and collaboration in the Paiporta experiment. The authors also want to thank Alfred Leick and Steve Hilla for their valuable comments and suggestions.Martín Furones, ÁE.; Luján García Muñoz, R.; Anquela Julián, AB. (2020). Python software tools for GNSS interferometric reflectometry (GNSS-IR). GPS Solutions. 24(4):1-7. https://doi.org/10.1007/s10291-020-01010-0S17244Chen Q, Won D, Akos DM, Small EE (2016) Vegetation using GPS interferometric reflectometry: experimental results with a horizontal polarized antenna. IEEE J Select Top Appl Earth Obs Rem Sens 9(10):4771–4780. https://doi.org/10.1109/JSTARS.2016.2565687Chew CC, Small EE, Larson KM, Zavorotny VU (2014) Effects of near-surface soil moisture on GPS SNR data: development and retrieval algorithm for soil moisture. IEEE T Geosci Rem Sens 52(1):537–543. https://doi.org/10.1109/TGRS.2013.2242332Chew CC, Small EE, Larson KM, Zavorotny UZ (2015) Vegetation sensing using GPS-interferometric reflectometry: theoretical effects of canopy parameters on signal-to-noise ratio data. IEEE T Geosci Rem Sens 53(5):2755–2764. https://doi.org/10.1109/TGRS.2014.2364513Chew CC, Small EE, Larson KM (2016) An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil. GPS Solut 20(3):525–537. https://doi.org/10.1007/s10291-015-0462-4Gurtner W, Estey L (2015) RINEX: the receiver independent exchange format version 3.03. ftp://igs.org/pub/data/format/rinex303.pdfLarson KM, Small EE, Gutmann ED, Bilich AL, Axelrad A, Braun JJ (2008a) Using GPS multipath to measure soil moisture fluctuations: initial results. GPS Solut 12(3):173–177. https://doi.org/10.1007/s10291-007-0076-6Larson KM, Small EE, Gutmann ED, Bilich AL, Braun JJ, Zavorotny VU (2008b) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett 35:L24405. https://doi.org/10.1029/2008GL036013Larson KM, Gutmann E, Zavorotny VU, Braun J, Williams M, Nievinski FG (2009) Can we measure snow depth with GPS receivers? Geophys Res Lett 36:L17502. https://doi.org/10.1029/2009GL039430Larson KM, Braun JJ, Small EE, Zavorotny VU (2010) GPS multipath and its relation to near-surface soil moisture content. IEEE J Selec Top Appl Earth Obs Rem Sens 3(1):91–99. https://doi.org/10.1109/JSTARS.2009.2033612Larson KM, Nievinski FG (2013) GPS snow sensing: results from the EarthScope plate boundary observatory. GPS Solut 17(1):41–52. https://doi.org/10.1007/s10291-012-0259-7Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, Hoboken, p 840Martín A, Ibañez S, Baixauli C, Blanc S, Anquela AB (2020) Multi-constellation interferometric reflectometry with mass-market sensors as a solution for soil moisture monitoring. Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-24-3573-2020Nievinski GG, Larson KM (2014) An open source GPS multipath simulator in Matlab/Octave. GPS Solut 18:473–481. https://doi.org/10.1007/s10291-014-0370-zNischan T (2016) GFZRNX—RINEX GNSS data conversion and manipulation toolbox (Version 1.05). GFZ Data Serv. https://doi.org/10.5880/GFZ.1.1.2016.002Roesler C, Larson KM (2018) Software tools for GNSS interferometric reflectometry (GNSS-IR). GPS Solut. https://doi.org/10.1007/s10291-018-0744-8Roussel N, Ramilien G, Frappart F, Darrozes J, Gay A, Biancale R, Striebig N, Hanquiez V, Bertin X, Allain A (2015) Sea level monitoring and sea estimate using a single geodetic receiver. Remote Sens Environ 171:261–277. https://doi.org/10.1016/j.rse.2015.10.011Roussel N, Frappart F, Ramillien G, Darroes J, Baup F, Lestarquit L, Ha MC (2016) Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2º to 70º. IEEE J Selec Top Appl Earth Obs Rem Sens 9(10):4781–4794. https://doi.org/10.1109/JSTARS.2016.2537847Sanz J, Juan JM, Hernández-Pajares M (2013) GNSS data processing. Volume I: fundamentals and algorithms. European Space Agency Communications, 223 ppSmall EE, Larson KM, Chew CC, Dong J, Ochsner TE (2016) Validation of GPS-IR soil moisture retrievals: comparison of different algorithms to remove vegetation effects. IEEE J Selec Top Appl Earth Obs Rem Sens 9(10):4759–4770. https://doi.org/10.1109/JSTARS.2015.2504527Vey S, Güntner A, Wickert J, Blume T, Ramatschi M (2016) Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa. GPS Solut 20:641–654. https://doi.org/10.1007/s10291-015-0474-0Wan W, Larson KM, Small EE, Chew CC, Braun JJ (2015) Using geodetic GPS receivers to measure vegetation water content. GPS Solut 19:237–248. https://doi.org/10.1007/s10291-014-0383-7Zhang S, Roussel N, Boniface K, Ha MC, Frappart F, Darrozes J, Baup F, Calvet JC (2017) Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop. Hydrol Earth Syst Sci 21:4767–4784. https://doi.org/10.5194/hess-21-4767-201

    The Use of Corticosteroids or Tocilizumab in COVID-19 Based on Inflammatory Markers

    Get PDF
    SEMI-COVID-19 Network.[Background] The inflammatory cascade is the main cause of death in COVID-19 patients. Corticosteroids (CS) and tocilizumab (TCZ) are available to treat this escalation but which patients to administer it remains undefined.[Objective] We aimed to evaluate the efficacy of immunosuppressive/anti-inflammatory therapy in COVID-19, based on the degree of inflammation. .[Design] A retrospective cohort study with data on patients collected and followed up from March 1st, 2020, to May 1st, 2021, from the nationwide Spanish SEMI-COVID-19 Registry. Patients under treatment with CS vs. those under CS plus TCZ were compared. Effectiveness was explored in 3 risk categories (low, intermediate, high) based on lymphocyte count, C-reactive protein (CRP), lactate dehydrogenase (LDH), ferritin, and d-dimer values.[Patients] A total of 21,962 patients were included in the Registry by May 2021. Of these, 5940 met the inclusion criteria for the present study (5332 were treated with CS and 608 with CS plus TCZ).[Main Measures] The primary outcome of the study was in-hospital mortality. Secondary outcomes were the composite variable of in-hospital mortality, requirement for high-flow nasal cannula (HFNC), non-invasive mechanical ventilation (NIMV), invasive mechanical ventilation (IMV), or intensive care unit (ICU) admission.[Key Results] A total of 5940 met the inclusion criteria for the present study (5332 were treated with CS and 608 with CS plus TCZ). No significant differences were observed in either the low/intermediate-risk category (1.5% vs. 7.4%, p=0.175) or the high-risk category (23.1% vs. 20%, p=0.223) after propensity score matching. A statistically significant lower mortality was observed in the very high–risk category (31.9% vs. 23.9%, p=0.049).[Conclusions] The prescription of CS alone or in combination with TCZ should be based on the degrees of inflammation and reserve the CS plus TCZ combination for patients at high and especially very high risk.Peer reviewe

    Healthcare workers hospitalized due to COVID-19 have no higher risk of death than general population. Data from the Spanish SEMI-COVID-19 Registry

    Get PDF
    Aim To determine whether healthcare workers (HCW) hospitalized in Spain due to COVID-19 have a worse prognosis than non-healthcare workers (NHCW). Methods Observational cohort study based on the SEMI-COVID-19 Registry, a nationwide registry that collects sociodemographic, clinical, laboratory, and treatment data on patients hospitalised with COVID-19 in Spain. Patients aged 20-65 years were selected. A multivariate logistic regression model was performed to identify factors associated with mortality. Results As of 22 May 2020, 4393 patients were included, of whom 419 (9.5%) were HCW. Median (interquartile range) age of HCW was 52 (15) years and 62.4% were women. Prevalence of comorbidities and severe radiological findings upon admission were less frequent in HCW. There were no difference in need of respiratory support and admission to intensive care unit, but occurrence of sepsis and in-hospital mortality was lower in HCW (1.7% vs. 3.9%; p = 0.024 and 0.7% vs. 4.8%; p<0.001 respectively). Age, male sex and comorbidity, were independently associated with higher in-hospital mortality and healthcare working with lower mortality (OR 0.211, 95%CI 0.067-0.667, p = 0.008). 30-days survival was higher in HCW (0.968 vs. 0.851 p<0.001). Conclusions Hospitalized COVID-19 HCW had fewer comorbidities and a better prognosis than NHCW. Our results suggest that professional exposure to COVID-19 in HCW does not carry more clinical severity nor mortality

    Innovaciones y mejoras en el proyecto tutoría entre compañeros. Curso 2015-2016

    Get PDF
    Memoria ID-0137. Ayudas de la Universidad de Salamanca para la innovación docente, curso 2015-2016
    corecore