15 research outputs found

    Drosophila Brakeless Interacts with Atrophin and Is Required for Tailless-Mediated Transcriptional Repression in Early Embryos

    Get PDF
    Complex gene expression patterns in animal development are generated by the interplay of transcriptional activators and repressors at cis-regulatory DNA modules (CRMs). How repressors work is not well understood, but often involves interactions with co-repressors. We isolated mutations in the brakeless gene in a screen for maternal factors affecting segmentation of the Drosophila embryo. Brakeless, also known as Scribbler, or Master of thickveins, is a nuclear protein of unknown function. In brakeless embryos, we noted an expanded expression pattern of the Krüppel (Kr) and knirps (kni) genes. We found that Tailless-mediated repression of kni expression is impaired in brakeless mutants. Tailless and Brakeless bind each other in vitro and interact genetically. Brakeless is recruited to the Kr and kni CRMs, and represses transcription when tethered to DNA. This suggests that Brakeless is a novel co-repressor. Orphan nuclear receptors of the Tailless type also interact with Atrophin co-repressors. We show that both Drosophila and human Brakeless and Atrophin interact in vitro, and propose that they act together as a co-repressor complex in many developmental contexts. We discuss the possibility that human Brakeless homologs may influence the toxicity of polyglutamine-expanded Atrophin-1, which causes the human neurodegenerative disease dentatorubral-pallidoluysian atrophy (DRPLA)

    The DNA puff 4C expresses a salivary secretion protein in Trichosia pubescens (Diptera; Sciaridae)

    No full text
    DNA puffs are genomic regions of polytene chromosomes that undergo developmentally controlled DNA amplification and transcription in salivary glands of sciarid flies. Here, we tested the hypothesis that DNA puff genes code for salivary proteins in Trichosia pubescens. To do that, we generated antibodies against saliva and immunoscreened a cDNA library made from salivary glands. We isolated clones corresponding to DNA puff regions, including clone D-50 that contained the entire coding sequence of the previously isolated C4B1 gene from puff 4C. Indeed, we showed that puff 4C is a DNA puff region detecting its local transcription and its extra rounds of DNA incorporation compared to neighboring regions. We further confirmed D-50 clone identity in Western blots reacted with the anti-saliva anitiserum. We detected a recombinant protein expressed by this clone that had the expected size for a full-length product of the gene. We end with a discussion of the relationship between DNA puff genes and their products

    Ribosomal RNA gene insertions in the R2 site of Rhynchosciara (Diptera: Sciaridae)

    No full text
    Ribosomal RNA genes of most insects are interrupted by R1/R2 retrotransposons. The occurrence of R2 retrotransposons in sciarid genomes was studied by PCR and Southern blot hybridization in three Rhynchosciara species and in Trichosia pubescens. Amplification products with the expected size for non-truncated R2 elements were only obtained in Rhynchosciara americana. The rDNA in this species is located in the proximal end of the X mitotic chromosome but in the salivary gland is associated with all four polytene chromosomes. Approximately 50% of the salivary gland rDNA of most R. americana larval groups analysed had an insertion in the R2 site, while no evidence for the presence of R1 elements was found. In-situ hybridization results showed that rDNA repeat units containing R2 take part in the structure of the extrachromosomal rDNA. Also, rDNA resistance to Bal 31 digestion could be interpreted as evidence for nonlinear rDNA as part of the rDNA in the salivary gland. Insertions in the rDNA of three other sciarid species were not detected by Southern blot and in-situ hybridization, suggesting that rDNA retrotransposons are significantly under-represented in their genomes in comparison with R. americana. R2 elements apparently restricted to R. americana correlate with an increased amount of repetitive DNA in its genome in contrast to other Rhynchosciara species. The results obtained in this work together with previous results suggest that evolutionary changes in the genus Rhynchosciara occurred by differential genomic occupation not only of satellite DNA but possibly also of rDNA retrotransposons.FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Dictyostelium discoideum protein phosphatase-1 catalytic subunit exhibits distinct biochemical properties.

    No full text
    Protein phosphatase-1 (PP1) is expressed ubiquitously and is involved in many eukaryotic cellular functions, although PP1 enzyme activity could not be detected in the social amoeba Dictyostelium discoideum cell extracts. In the present paper, we show that D. discoideum has a single copy gene that codes for the catalytic subunit of PP1 (DdPP1c). DdPP1c is expressed throughout the D. discoideum life cycle with constant levels of mRNA, and its protein and amino acid sequence show a mean identity of 80% with other PP1c enzymes. However, it has a distinctive difference: the substitution of a phenylalanine residue (Phe(269) in the DdPP1c) for a highly conserved cysteine residue (Cys(273) in rabbit PP1c) in a region that was shown to have a critical role in the interaction of rabbit PP1c with toxin inhibitors. Wild-type DdPP1c and an engineered mutant form in which Phe(269) was replaced by a cysteine residue were expressed in Escherichia coli. Both recombinant activities were similarly inhibited by okadaic acid, tautomycin and microcystin. However, the Phe(269)-->Cys mutation resulted in a large increase in enzyme activity towards phosphorylase a and a higher sensitivity to calyculin A. These results, together with the molecular modelling of DdPP1c structure, indicate that the Phe(269) residue, which occurs naturally in D. discoideum, confers distinct biochemical properties on this enzyme

    Huckebein is part of a combinatorial repression code in the anterior blastoderm

    Get PDF
    The hierarchy of the segmentation cascade responsible for establishing the Drosophila body plan is composed by gap, pair-rule and segment polarity genes. However, no pair-rule stripes are formed in the anterior regions of the embryo. This lack of stripe formation, as well as other evidence from the literature that is further investigated here, led us to the hypothesis that anterior gap genes might be involved in a combinatorial mechanism responsible for repressing the cis-regulatory modules (CRMs) of hairy (h), even-skipped (eve), runt (run), and fushi-tarazu (ftz) anterior-most stripes. In this study, we investigated huckebein (hkb), which has a gap expression domain at the anterior tip of the embryo. Using genetic methods we were able to detect deviations from the wild-type patterns of the anterior-most pair-rule stripes in different genetic backgrounds, which were consistent with Hkb-mediated repression. Moreover, we developed an image processing tool that, for the most part, confirmed our assumptions. Using an hkb misexpression system, we further detected specific repression on anterior stripes. Furthermore, bioinformatics analysis predicted an increased significance of binding site clusters in the CRMs of h 1, eve 1, run 1 and ftz 1 when Hkb was incorporated in the analysis, indicating that Hkb plays a direct role in these CRMs. We further discuss that Hkb and Slp1, which is the other previously identified common repressor of anterior stripes, might participate in a combinatorial repression mechanism controlling stripe CRMs in the anterior parts of the embryo and define the borders of these anterior stripes. (C) 2011 Elsevier Inc. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo) [03/12147-4, 2009/10413-5]Sao Paulo State Funding Agency [03/01640-1]Sao Paulo State Funding Agenc

    Characterizing the embryonic development of B. hygida (Diptera: Sciaridae) following enzymatic treatment to permeabilize the serosal cuticle

    No full text
    Understanding the evolution of the developmental programs active during dipteran embryogenesis depends on comparative studies. As a counterpoint to the intensively investigated and highly derived cyclorrhaphan flies that include the model organism Drosophila melanogaster, we are studying the basal Diptera Bradysia hygida, a member of the Sciaridae family that is amenable to laboratory cultivation. Here we describe the B. hygida embryogenesis, which lasts 9 days at 22 °C. The use of standard fixation D. melanogaster protocols resulted in embryos refractory to DAPI staining and to overcome this, a new enzyme-based method was developed. Calcofluor-White staining of enzimatically-treated embryos revealed that this method removes chitin from the serosal cuticle surrounding the B. hygida embryo. Chitin is one of the main components of serosal cuticles and searches in a B. hygida embryonic transcriptome database revealed conservation of the chitin synthesis pathway, further supporting the occurrence of chitin biosynthesis in B. hygida embryos. Combining the enzymatic treatment protocol with the use of both DIC and fluorescence microscopy allowed the first complete description of the B. hygida embryogenesis. Our results constitute an important step towards the understanding of early development of a basal Diptera and pave the way for future evo-devo studies.Work in N. Monesi's and L.P. Andrioli's laboratories was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grant numbers 2016/25325-8 and 2014/14318-5, respectively). JVCU was the recipient of a FAPESP undergraduate scholarship (grant number 2016/00412-5). We also thank FAPESP for a Ph.D. scholarship to GTPB (grant number 2015/24305-0)
    corecore