10 research outputs found
Sod2 haploinsufficiency does not accelerate aging of telomere dysfunctional mice
Telomere
shortening represents a causal factor of cellular senescence. At the same
time, several lines of evidence indicate a pivotal role of oxidative DNA
damage for the aging process in vivo. A causal connection between
the two observations was suggested by experiments showing accelerated
telomere shorting under conditions of oxidative stress in cultured cells,
but has never been studied in vivo. We therefore have analysed
whether an increase in mitochondrial derived oxidative stress in response
to heterozygous deletion of superoxide dismutase (Sod2+/-)
would exacerbate aging phenotypes in telomere dysfunctional (mTerc-/-)
mice. Heterozygous deletion of Sod2 resulted in reduced SOD2 protein
levels and increased oxidative stress in aging telomere dysfunctional mice,
but this did not lead to an increase in basal levels of oxidative nuclear
DNA damage, an accumulation of nuclear DNA breaks, or an increased rate of
telomere shortening in the mice. Moreover, heterozygous deletion of Sod2
did not accelerate the depletion of stem cells and the impairment in organ
maintenance in aging mTerc-/- mice. In agreement
with these observations, Sod2 haploinsufficiency did not lead to a
further reduction in lifespan of mTerc-/- mice. Together,
these results indicate that a decrease in SOD2-dependent antioxidant
defence does not exacerbate aging in the context of telomere dysfunction
Regeneration of the Exocrine Pancreas Is Delayed in Telomere-Dysfunctional Mice
INTRODUCTION: Telomere shortening is a cell-intrinsic mechanism that limits cell proliferation by induction of DNA damage responses resulting either in apoptosis or cellular senescence. Shortening of telomeres has been shown to occur during human aging and in chronic diseases that accelerate cell turnover, such as chronic hepatitis. Telomere shortening can limit organ homeostasis and regeneration in response to injury. Whether the same holds true for pancreas regeneration in response to injury is not known. METHODS: In the present study, pancreatic regeneration after acute cerulein-induced pancreatitis was studied in late generation telomerase knockout mice with short telomeres compared to telomerase wild-type mice with long telomeres. RESULTS: Late generation telomerase knockout mice exhibited impaired exocrine pancreatic regeneration after acute pancreatitis as seen by persistence of metaplastic acinar cells and markedly reduced proliferation. The expression levels of p53 and p21 were not significantly increased in regenerating pancreas of late generation telomerase knockout mice compared to wild-type mice. CONCLUSION: Our results indicate that pancreatic regeneration is limited in the context of telomere dysfunction without evidence for p53 checkpoint activation
Smg6/Est1 licenses embryonic stem cell differentiation via nonsense‐mediated mRNA decay
Nonsense‐mediated mRNA decay (NMD) is a post‐transcriptional mechanism that targets aberrant transcripts and regulates the cellular RNA reservoir. Genetic modulation in vertebrates suggests that NMD is critical for cellular and tissue homeostasis, although the underlying mechanism remains elusive. Here, we generate knockout mice lacking Smg6/Est1, a key nuclease in NMD and a telomerase cofactor. While the complete loss of Smg6 causes mouse lethality at the blastocyst stage, inducible deletion of Smg6 is compatible with embryonic stem cell (ESC) proliferation despite the absence of telomere maintenance and functional NMD. Differentiation of Smg6‐deficient ESCs is blocked due to sustained expression of pluripotency genes, normally repressed by NMD, and forced down‐regulation of one such target, c‐Myc, relieves the differentiation block. Smg6‐null embryonic fibroblasts are viable as well, but are refractory to cellular reprograming into induced pluripotent stem cells (iPSCs). Finally, depletion of all major NMD factors compromises ESC differentiation, thus identifying NMD as a licensing factor for the switch of cell identity in the process of stem cell differentiation and somatic cell reprograming