129 research outputs found

    The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR

    Get PDF
    Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory disease

    Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport

    Get PDF
    One therapeutic strategy for cystic fibrosis (CF) seeks to restore anion transport to affected epithelia by targeting other apical membrane Cl- channels to bypass dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. The properties and regulation of the Ca2+-activated Cl- channel TMEM16A argue that long-acting small molecules which target directly TMEM16A are required to overcome CFTR loss. Through genetic studies of lung diseases, SLC26A9, a member of the solute carrier 26 family of anion transporters, has emerged as a promising target to bypass CFTR dysfunction. An alternative strategy to circumvent CFTR dysfunction is to deliver to CF epithelia artificial anion transporters that shuttle Cl- across the apical membrane. Recently, powerful, non-toxic, biologically-active artificial anion transporters have emerged

    IL-4 Is a Potent Modulator of Ion Transport in the Human Bronchial Epithelium In Vitro

    Get PDF
    AbstractRecent data show that proinflammatory stimuli may modify significantly ion transport in the airway epithelium and therefore the properties of the airway surface fluid. We have studied the effect of IL-4, a cytokine involved in the pathogenesis of asthma, on transepithelial ion transport in the human bronchial epithelium in vitro. Incubation of polarized bronchial epithelial cells with IL-4 for 6–48 h causes a marked inhibition of the amiloride-sensitive Na+ channel as measured in short circuit current experiments. On the other hand, IL-4 evokes a 2-fold increase in the current activated by a cAMP analog, which reflects the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). Similarly, IL-4 enhances the response to apical UTP, an agonist that activates Ca2+-dependent Cl− channels. These effects are mimicked by IL-13 and blocked by an antagonist of IL-4Rα. RT-PCR experiments show that IL-4 elicits a 7-fold decrease in the level of the γ amiloride-sensitive Na+ channel mRNA, one of the subunits of the amiloride-sensitive Na+ channel, and an increase in CFTR mRNA. Our data suggest that IL-4 may favor the hydration of the airway surface by decreasing Na+ absorption and increasing Cl− secretion. This could be required to fluidify the mucus, which is hypersecreted during inflammatory conditions. On the other hand, the modifications of ion transport could also affect the ion composition of airway surface fluid

    High-throughput screening for modulators of ACVR1 transcription: discovery of potential therapeutics for fibrodysplasia ossificans progressiva.

    Get PDF
    open12noopenCappato, S; Tonachini, L; Giacopelli, F; Tirone, M; Galietta, Lj; Sormani, M; Giovenzana, A; Spinelli, Antonello E.; Canciani, B; Brunelli, S; Ravazzolo, R; Bocciardi, R.Cappato, S; Tonachini, L; Giacopelli, F; Tirone, M; Galietta, Lj; Sormani, M; Giovenzana, A; Spinelli, Antonello; Canciani, B; Brunelli, S; Ravazzolo, R; Bocciardi, R

    TITLE PAGE α-AMINOAZAHETEROCYCLIC-METHYLGLYOXAL ADDUCTS DO NOT INHIBIT CFTR CHLORIDE CHANNEL ACTIVITY

    Get PDF
    ABSTRACT Inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have potential applications in the therapy of secretory diarrheas and polycystic kidney disease. Recently, several highly polar α-aminoazaheterocyclic-methylglyoxal adducts were reported to reversibly inhibit CFTR chloride channel activity with IC50 values in the low picomolar range (Routaboul et al. J. Pharmacol. Exp. Ther. 322:1023-1035, more than 10,000-fold better than that of thiazolidionone and glycine hydrazide CFTR inhibitors identified previously by highthroughout screening. Here, we resynthesized and evaluated the α-aminoazaheterocyclicmethylglyoxal adducts of Routaboul et al. reported to have high CFTR inhibition potency (compounds 5, 7 and 8). We verified that the reported synthesis procedures produced the target compounds in high yield. However, we found that these compounds did not inhibit CFTR chloride channel function in multiple cell lines at up to 100 µM concentration, using three independent assays of CFTR function including short-circuit current analysis, whole-cell patch-clamp and YFPfluorescence quenching. As positive controls, near 100% CFTR inhibition was found by thiazolidionone and glycine hydrazide CFTR inhibitors. Our data provide direct evidence against CFTR inhibition by α-aminoazaheterocyclic-methylglyoxal adducts

    Cystic Fibrosis: A New Target for 4-Imidazo[2,1-b]thiazole-1,4-dihydropyridines

    Get PDF
    The pharmacology of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel has attracted significant interest in recent years with the aim to search for rational new therapies for diseases caused by CFTR malfunction. Mutations that abolish the function of CFTR cause the life-threatening genetic disease cystic fibrosis (CF). The most common cause of CF is the deletion of phenylalanine 508 (ΔF508) in the CFTR chloride channel. Felodipine, nifedipine, and other antihypertensive 1,4-dihydropyridines (1,4-DHPs) that block L-type Ca(2+) channels are also effective potentiators of CFTR gating, able to correct the defective activity of ΔF508 and other CFTR mutants ( Mol. Pharmacol. 2005 , 68 , 1736 ). For this purpose, we evaluated the ability of the previously and newly synthesized 4-imidazo[2,1-b]thiazoles-1,4-dihydropyridines without vascular activity and inotropic and/or chronotropic cardiac effects ( J. Med. Chem. 2008 , 51 , 1592 ) to enhance the activity of ΔF508-CFTR. Our studies indicate compounds 17, 18, 20, 21, 38, and 39 as 1,4-DHPs with an interesting profile of activity

    Alternative Splicing at a NAGNAG Acceptor Site as a Novel Phenotype Modifier

    Get PDF
    Approximately 30% of alleles causing genetic disorders generate premature termination codons (PTCs), which are usually associated with severe phenotypes. However, bypassing the deleterious stop codon can lead to a mild disease outcome. Splicing at NAGNAG tandem splice sites has been reported to result in insertion or deletion (indel) of three nucleotides. We identified such a mechanism as the origin of the mild to asymptomatic phenotype observed in cystic fibrosis patients homozygous for the E831X mutation (2623G>T) in the CFTR gene. Analyses performed on nasal epithelial cell mRNA detected three distinct isoforms, a considerably more complex situation than expected for a single nucleotide substitution. Structure-function studies and in silico analyses provided the first experimental evidence of an indel of a stop codon by alternative splicing at a NAGNAG acceptor site. In addition to contributing to proteome plasticity, alternative splicing at a NAGNAG tandem site can thus remove a disease-causing UAG stop codon. This molecular study reveals a naturally occurring mechanism where the effect of either modifier genes or epigenetic factors could be suspected. This finding is of importance for genetic counseling as well as for deciding appropriate therapeutic strategies

    The Autophagy Inhibitor Spautin-1 Antagonizes Rescue of Mutant CFTR Through an Autophagy-Independent and USP13-Mediated Mechanism

    Get PDF
    The mutation F508del, responsible for a majority of cystic fibrosis cases, provokes the instability and misfolding of the CFTR chloride channel. Pharmacological recovery of F508del-CFTR may be obtained with small molecules called correctors. However, treatment with a single corrector in vivo and in vitro only leads to a partial rescue, a consequence of cell quality control systems that still detect F508del-CFTR as a defective protein causing its degradation. We tested the effect of spautin-1 on F508del-CFTR since it is an inhibitor of USP10 deubiquitinase and of autophagy, a target and a biological process that have been associated with cystic fibrosis and mutant CFTR. We found that short-term treatment of cells with spautin-1 downregulates the function and expression of F508del-CFTR despite the presence of corrector VX-809, a finding obtained in multiple cell models and assays. In contrast, spautin-1 was ineffective on wild type CFTR. Silencing and upregulation of USP13 (another target of spautin-1) but not of USP10, had opposite effects on F508del-CFTR expression/function. In contrast, modulation of autophagy with known activators or inhibitors did not affect F508del-CFTR. Our results identify spautin-1 as a novel chemical probe to investigate the molecular mechanisms that prevent full rescue of mutant CFTR

    Genetic Inhibition of the Ubiquitin Ligase Rnf5 Attenuates Phenotypes Associated to F508del Cystic Fibrosis Mutation

    Get PDF
    Cystic fibrosis (CF) is caused by mutations in the CFTR chloride channel. Deletion of phenylalanine 508 (F508del), the most frequent CF mutation, impairs CFTR trafficking and gating. F508del-CFTR mistrafficking may be corrected by acting directly on mutant CFTR itself or by modulating expression/activity of CFTR-interacting proteins, that may thus represent potential drug targets. To evaluate possible candidates for F508del-CFTR rescue, we screened a siRNA library targeting known CFTR interactors. Our analysis identified RNF5 as a protein whose inhibition promoted significant F508del-CFTR rescue and displayed an additive effect with the investigational drug VX-809. Significantly, RNF5 loss in F508del-CFTR transgenic animals ameliorated intestinal malabsorption and concomitantly led to an increase in CFTR activity in intestinal epithelial cells. In addition, we found that RNF5 is differentially expressed in human bronchial epithelia from CF vs. control patients. Our results identify RNF5 as a target for therapeutic modalities to antagonize mutant CFTR proteins

    Managing the underlying cause of cystic fibrosis: A future role for potentiators and correctors

    No full text
    Cystic fibrosis (CF), a severe genetic disease, is caused by mutations that alter the structure and function of CFTR, a plasma membrane channel permeable to chloride and bicarbonate. Defective anion transport in CF irreversibly damages the lungs, pancreas, liver, and other organs. CF mutations cause loss of CFTR function in multiple ways. In particular, class 3 mutations such as p.Gly551Asp strongly decrease the time spent by CFTR in the open state (gating defect). Instead, class 2 mutations impair the maturation of CFTR protein and its transport from the endoplasmic reticulum to the plasma membrane (trafficking defect). The deletion of phenylalanine 508 (p.Phe508del), the most frequent mutation among CF patients (70-90 %), destabilizes the CFTR protein, thus causing both a trafficking and a gating defect. These two defects can be overcome with drug-like molecules generically called correctors and potentiators, respectively. The potentiator Kalydeco™ (also known as Ivacaftor or VX-770), developed by Vertex Pharmaceuticals, has been recently approved by the US FDA and the European Medicines Agency (EMA) for the treatment of CF patients carrying at least one CFTR allele with the p.Gly551Asp mutation (2-5 % of all patients). In contrast, the corrector VX-809, which significantly improves p.Phe508del-CFTR trafficking in vitro, is still under study in clinical trials. Because of multiple defects caused by the p.Phe508del mutation, it is probable that rescue of the mutant protein will require combined treatment with correctors having different mechanisms of action. This review evaluates the status of experimental and clinical research in pharmacotherapy for the CF basic defect
    corecore