2,045 research outputs found

    Using a 3-tier Training Model for Effective Exchange of Good Practices in as ERASMUS+ Project

    Get PDF
    VISIR+ is an Erasmus+ project that aims to develop educational modules for electric and electronic circuits theory and practice following an enquiry-based teaching and learning methodology. The project has installed five new VISIR remote labs in Higher Education Institutions located in Argentina and Brazil, to allow students doing more experiments and hence acquire better experimental skills, through a combination of traditional (hands-on), remote and virtual laboratories. A key aspect for the success of this project was to motivate and train teachers in the underpinning educational methodology. As such, VISIR+ adopted a 3-tier training process to effectively support the use of VISIR in the Institutions that received it. This process is based on the “train the trainer” approach, which required the participating partner institutions to identify and engage a number of associated partners, interested in using their newly installed remote lab. To measure the quality of the training process, the same satisfaction questionnaire was used in all training actions. This paper presents a detailed description of the training actions along with the analysis of the satisfaction questionnaire results. Major conclusions are that the quality level of the training process remained practically the same across all training actions and that trainees sometimes considered the practical use of the VISIR remote lab as difficult, irrespectively of where and when the training action took place.info:eu-repo/semantics/publishedVersio

    The Schistosomiasis SpleenOME: Unveiling the Proteomic Landscape of Splenomegaly Using Label-Free Mass Spectrometry

    Get PDF
    Schistosomiasis is a neglected parasitic disease that affects millions of people worldwide and is caused by helminth parasites from the genus Schistosoma. When caused by S. mansoni, it is associated with the development of a hepatosplenic disease caused by an intense immune response to the important antigenic contribution of adult worms and to the presence of eggs trapped in liver tissue. Although the importance of the spleen for the establishment of immune pathology is widely accepted, it has received little attention in terms of the molecular mechanisms operating in response to the infection. Here, we interrogated the spleen proteome using a label-free shotgun approach for the potential discovery of molecular mechanisms associated to the peak of the acute phase of inflammation and the development of splenomegaly in the murine model. Over fifteen hundred proteins were identified in both infected and control individuals and 325 of those proteins were differentially expressed. Two hundred and forty-two proteins were found upregulated in infected individuals while 83 were downregulated. Functional enrichment analyses for differentially expressed proteins showed that most of them were categorized within pathways of innate and adaptive immunity, DNA replication, vesicle transport and catabolic metabolism. There was an important contribution of granulocyte proteins and antigen processing and presentation pathways were augmented, with the increased expression of MHC class II molecules but the negative regulation of cysteine and serine proteases. Several proteins related to RNA processing were upregulated, including splicing factors. We also found indications of metabolic reprogramming in spleen cells with downregulation of proteins related to mitochondrial metabolism. Ex-vivo imunophenotyping of spleen cells allowed us to attribute the higher abundance of MHC II detected by mass spectrometry to increased number of macrophages (F4/80+/MHC II+ cells) in the infected condition. We believe these findings add novel insights for the understanding of the immune mechanisms associated with the establishment of schistosomiasis and the processes of immune modulation implied in the host-parasite interactions

    Discrimination based on sexual orientation against MSM in Brazil : a latent class analysis

    Get PDF
    Introdução: A discriminação por orientação sexual (DPOS) pode influenciar a vulnerabilidade ao HIV aumentando a exposição a comportamentos sexuais de risco entre homens que fazem sexo com homens (HSH). Objetivos: Examinar dados utilizando a análise de classes latentes (ACL) para identificar grupos de indivíduos com padrões específicos de DPOS. Métodos: Estudo transversal com entrevistados recrutados pelo processo amostral respondent driven sampling em 12 cidades brasileiras em 2016. A ACL foi usada para caracterizar o DPOS entre HSH com base em 13 variáveis do bloco de discriminação do questionário da pesquisa. As proporções de DPOS e das variáveis de interesse, bem como seus intervalos de confiança (95%) foram ponderados usando o estimador de Gile. Resultados: A maioria era de jovens, solteiros, com alguma religião, escolaridade média ou superior, cor da pele preta ou parda e com nível socioeconômico médio. Mais da metade referiu ter sido discriminado nos últimos 12 meses por sua orientação sexual (65%), mais de um terço referiu ter tido medo de andar em lugares públicos nos últimos 12 meses e em torno de um quinto dos participantes reportaram ter sofrido agressão física ou sexual na vida. A DPOS foi classificada em 4 classes latentes, “muito alta”, “alta”, “média” e “baixa”, com estimativas de 2,2%, 16,4%, 35,1% e 46,19%, respectivamente. Conclusão: Observou-se alta proporção de discriminação entre os HSH participantes deste estudo. A utilização da ACL discriminou de maneira parcimoniosa as classes de DPOS.Introduction: Discrimination based on sexual orientation can influence vulnerability to HIV, increasing exposure to risky sexual behavior among men who have sex with men (MSM). Objectives: To analyze data using latent class analysis (LCA) to identify groups of individuals with specific patterns of discrimination based on sexual orientation (DSO). Methods: Cross-sectional study using respondent-driven sampling in 12 Brazilian cities in 2016. LCA was used to characterize discrimination among MSM based on 13 variables in the survey questionnaire. The proportions of men reporting DSO and other variables of interest were estimated using Gile’s Successive Sampling estimator. Results: Most MSM were young, single, had a religion, had a high school or college degree, black or brown skin color, and socioeconomic status classified as average. More than half of the participants reported that they had been discriminated against during the last 12 months due to their sexual orientation (65%), more than a third said they had felt afraid of walking in public places during the past 12 months, and about one-fifth of participants reported having been victims of physical or sexual assault due to DSO. DSO was classified into four latent classes: “very high”, “high”, “moderate” and “low”, with estimates of 2.2%, 16.4%, 35.1%, and 46.19%, respectively. Conclusion: We observed a high proportion of discrimination against MSM in this study. The use of LCA differentiated parsimoniously classes of discrimination

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Spreading remote lab usage: A system — A community — A Federation

    Get PDF
    Experiments have been at the heart of scientific development and education for centuries. From the outburst of Information and Communication Technologies, virtual and remote labs have added to hands-on labs a new conception of practical experience, especially in Science, Technology, Engineering and Mathematics education. This paper aims at describing the features of a remote lab named Virtual Instruments System in Reality, embedded in a community of practice and forming the spearhead of a federation of remote labs. More particularly, it discusses the advantages and disadvantages of remote labs over virtual labs as regards to scalability constraints and development and maintenance costs. Finally, it describes an actual implementation in an international community of practice of engineering schools forming the embryo of a first world wide federation of Virtual Instruments System in Reality nodes, under the framework of a project funded by the Erasmus+ Program.info:eu-repo/semantics/publishedVersio

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p
    corecore