1,068 research outputs found
Weighted proportional fairness and pricing based resource allocation for uplink offloading using IP flow mobility
Mobile data offloading has been proposed as a solution for the network congestion problem that is continuously aggravating due to the increase in mobile data demand. However, the majority of the state-of-the-art is focused on the downlink offloading, while the change of mobile user habits, like mobile content creation and uploading, makes uplink offloading a rising issue. In this work we focus on the uplink offloading using IP Flow Mobility (IFOM). IFOM allows a LTE mobile User Equipment (UE) to maintain two concurrent data streams, one through LTE and the other through WiFi access technology, that presents uplink limitations due to the inherent fairness design of IEEE 802.11 DCF by employing the CSMA/CA scheme with a binary exponential backoff algorithm. In this paper, we propose a weighted proportionally fair bandwidth allocation algorithm for the data volume that is being offloaded through WiFi, in conjunction with a pricing-based rate allocation for the rest of the data volume needs of the UEs that are transmitted through the LTE uplink. We aim to improve the energy efficiency of the UEs and to increase the offloaded data volume under the concurrent use of access technologies that IFOM allows. In the weighted proportionally fair WiFi bandwidth allocation, we consider both the different upload data needs of the UEs, along with their LTE spectrum efficiency and propose an access mechanism that improves the use of WiFi access in uplink offloading. In the LTE part, we propose a two-stage pricing-based rate allocation under both linear and exponential pricing approaches, aiming to satisfy all offloading UEs regarding their LTE uplink access. We theoretically analyse the proposed algorithms and evaluate their performance through simulations. We compare their performance with the 802.11 DCF access scheme and with a state-of-the-art access algorithm under different number of offloading UEs and for both linear and exponential pricing-based rate allocation for the LTE uplink. Through the evaluation of energy efficiency, offloading capabilities and throughput performance, we provide an improved uplink access scheme for UEs that operate with IFOM for uplink offloading.Peer ReviewedPreprin
Performance analysis of a persistent relay carrier sensing multiple access protocol
Postprint (published version
Resource allocation techniques for heterogeneous networks under user misbehavior
©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this letter we focus on the uplink offloading with IP Flow Mobility (IFOM). With IFOM a User Equipment (UE) is able to maintain concurrently two data streams, one through LTE and the other through WiFi. We consider the existence of malicious UEs that aim to exploit the WiFi bandwidth against their truthful peers, in order to upload less data through the energy demanding LTE uplink and a reputation based method is proposed to combat the selfish operation. The WiFi bandwidth is
allocated based on weighted proportional fairness and the LTE rate is defined through an exponential pricing algorithm. We theoretically analyse our approach and evaluate the performance of the malicious and the truthful UEs in terms of energy efficiency and throughput, through simulations. We show that while the malicious UEs present better energy efficiency before being detected, their performance is significantly degraded with the proposed reaction method.Peer ReviewedPostprint (author's final draft
Energy sharing and trading in multi-operator heterogeneous network deployments
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.With a view to the expected increased data traffic volume and energy consumption of the fifth generation networks, the use of renewable energy (RE) sources and infrastructure sharing have been embraced as energy and cost-saving technologies. Aiming at reducing cost and grid energy consumption, in the present paper, we study RE exchange (REE) possibilities in late-trend network deployments of energy harvesting (EH) macrocell and small cell base stations (EH-MBSs, EH-SBSs) that use an EH system, an energy storage system, and the smart grid as energy procurement sources. On this basis, we study a two-tier network composed of EH-MBSs that are passively shared among a set of mobile network operators (MNOs), and EH-SBSs that are provided to MNOs by an infrastructure provider (InP). Taking into consideration the infrastructure location and the variety of stakeholders involved in the network deployment, we propose as REE approaches 1) a cooperative RE sharing, based on bankruptcy theory, for the shared EH-MBSs and 2) a non-cooperative, aggregator-assisted RE trading, which uses double auctions to describe the REE acts among the InP provided EH-SBSs managed by different MNOs, after an initial internal REE among the ones managed by a single MNO. Our results display that our proposals outperform baseline approaches, providing a considerable reduction in SG energy utilization and costs, with satisfaction of the participant parties.Peer ReviewedPostprint (author's final draft
The Curriculum of study of Clement of Alexandria: Gnosis and Platonism
La obra de Clemente de Alejandría es una propedéutica que culmina en la experiencia de la gnosis. La gnosis es el conocimiento más elevado de las realidades divinas, a la vez intuición y contemplación. Para alcanzarlo, Clemente propone un plan de estudios, cuya finalidad es el ascenso del intelecto hacia la contemplación, que debe seguir el aspirante a la gnosis. Dicho plan de estudios, sin embargo, no es original de Clemente, sino de procedencia anterior, sobre el que Clemente aplica una lectura platónica. El presente trabajo examina las fuentes primarias de Clemente de Alejandría para mostrar algunas de las estructuras conceptuales platónicas que subyacen en la gnosis. Además, compara algunas similitudes conceptuales del currículum clementino con el incipiente neoplatonismo para subrayar como Clemente se sitúa en un periodo de transición desde el medioplatonismo.The work of Clement of Alexandria is a propedeutic which reaches its summit with the Gnostic experience. Gnosis is the higher knowledge of Divine reality, based on intuition and contemplation. Clement displays a curriculum of studThe work of Clement of Alexandria is a propedeutic which reaches its summit with the Gnostic experience. Gnosis is the higher knowledge of Divine reality, based on intuition and contemplation. Clement displays a curriculum of study that Gnostic candidate must follow in his intellectual ascension. The curriculum of study is not an original Clementine creation because is deeply rooted in ancient origins. This paper examines the textsy that Gnostic candidate must follow in his intellectual ascension. The curriculum of study is not an original Clementine creation because is deeply rooted in ancient origins. This paper examines the texts of Clement of Alexandria to expose the underlying conceptual platonic structures related to gnosis. In addition, the Clementine curriculum is structured and compared with similarities in Neo-Platonist curriculum, noticing the transition from Middle-Platonism
Reliable machine-to-machine multicast services with multi-radio cooperative retransmissions
The final publication is available at Springer via http://dx.doi.org/10.1007/s11036-015-0575-6The 3GPP is working towards the definition of service requirements and technical solutions to provide support for energy-efficient Machine Type Communications (MTC) in the forthcoming generations of cellular networks. One of the envisioned solutions consists in applying group management policies to clusters of devices in order to reduce control signaling and improve upon energy efficiency, e.g., multicast Over-The-Air (OTA) firmware updates. In this paper, a Multi-Radio Cooperative Retransmission Scheme is proposed to efficiently carry out multicast transmissions in MTC networks, reducing both control signaling and improving energy-efficiency. The proposal can be executed in networks composed by devices equipped with multiple radio interfaces which enable them to connect to both a cellular access network, e.g., LTE, and a short-range MTC area network, e.g., Low-Power Wi-Fi or ZigBee, as foreseen by the MTC architecture defined by ETSI. The main idea is to carry out retransmissions over the M2M area network upon error in the main cellular link. This yields a reduction in both the traffic load over the cellular link and the energy consumption of the devices. Computer-based simulations with ns-3 have been conducted to analyze the performance of the proposed scheme in terms of energy consumption and assess its superior performance compared to non-cooperative retransmission schemes, thus validating its suitability for energy-constrained MTC applications.Peer ReviewedPostprint (author's final draft
Game-theoretic infrastructure sharing in multioperator cellular networks
©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The introduction of fourth-generation wireless technologies has fueled the rapid development of cellular networks, significantly increasing the energy consumption and the expenditures of mobile network operators (MNOs). In addition, network underutilization during low-traffic periods (e.g., night zone) has motivated a new business model, namely, infrastructure sharing, which allows the MNOs to have their traffic served by other MNOs in the same geographic area, thus enabling them to switch off part of their network. In this paper, we propose a novel infrastructure-sharing algorithm for multioperator environments, which enables the deactivation of underutilized base stations during low-traffic periods. Motivated by the conflicting interests of the MNOs and the necessity for effective solutions, we introduce a game-theoretic framework that enables the MNOs to individually estimate the switching-off probabilities that reduce their expected financial cost. Our approach reaches dominant strategy equilibrium, which is the strategy that minimizes the cost of each player. Finally, we provide extensive analytical and experimental results to estimate the potential energy and cost savings that can be achieved in multioperator environments, incentivizing the MNOs to apply the proposed scheme.Peer ReviewedPostprint (author's final draft
Multiobjective auction-based switching-off scheme in heterogeneous networks: to bid or not to bid?
©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The emerging data traffic demand has caused a massive deployment of network infrastructure, including Base Stations (BSs) and Small Cells (SCs), leading to increased energy consumption and expenditures. However, the network underutilization during low traffic periods enables the Mobile Network Operators (MNOs) to save energy by having their traffic served by third party SCs, thus being able to switch off their BSs. In this paper, we propose a novel market approach to foster the opportunistic utilization of the unexploited SCs capacity, where the MNOs, instead of requesting the maximum capacity to meet their highest traffic expectations, offer a set of bids requesting different resources from the third party SCs at lower costs. Motivated by the conflicting financial interests of the MNOs and the third party, the restricted capacity of the SCs that is not adequate to carry the whole traffic in multi-operator scenarios, and the necessity for energy efficient solutions, we introduce a combinatorial auction framework, which includes i) a bidding strategy, ii) a resource allocation scheme, and iii) a pricing rule. We propose a multiobjective framework as an energy and cost efficient solution for the resource allocation problem, and we provide extensive analytical and experimental results to estimate the potential energy and cost savings that can be achieved. In addition, we investigate the conditions under which the MNOs and the third party companies should take part in the proposed auction.Peer ReviewedPostprint (author's final draft
Connectivity analysis in clustered wireless sensor networks powered by solar energy
©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Emerging 5G communication paradigms, such as machine-type communication, have triggered an explosion in ad-hoc applications that require connectivity among the nodes of wireless networks. Ensuring a reliable network operation under fading conditions is not straightforward, as the transmission schemes and the network topology, i.e., uniform or clustered deployments, affect the performance and should be taken into account. Moreover, as the number of nodes increases, exploiting natural energy sources and wireless energy harvesting (WEH) could be the key to the elimination of maintenance costs while also boosting immensely the network lifetime. In this way, zero-energy wireless-powered sensor networks (WPSNs) could be achieved, if all components are powered by green sources. Hence, designing accurate mathematical models that capture the network behavior under these circumstances is necessary to provide a deeper comprehension of such networks. In this paper, we provide an analytical model for the connectivity in a large-scale zero-energy clustered WPSN under two common transmission schemes, namely, unicast and broadcast. The sensors are WEH-enabled, while the network components are solar-powered and employ a novel energy allocation algorithm. In our results, we evaluate the tradeoffs among the various scenarios via extensive simulations and identify the conditions that yield a fully connected zero-energy WPSN.Peer ReviewedPostprint (author's final draft
Viewoints: Should sustainable consumption and production be a policy priority for developing countries, and if so, what areas should they focus on?
As the human–resource–environment nexus is one of the serious issues confronting mankind, it is essential for developing countries to put in place proper sustainable consumption and production policies. These countries should focus on fostering a culture of sustainable consumption, enhancing legislation, reforming taxation and implementing recycling economy patterns. More specifically, as globalization merges consumerism with local traditional cultures, such as has been observed in China in recent years, the sustainable consumption culture should be formed and disseminated by education and training beginning in primary schools all the way through to college. Sustainable products and industries that exploit natural resources in an ecologically efficient manner should receive financial and technological support from public policy. Moreover, tax systems need an overhaul through imposition of ecological taxes that fall heavily on energyintensive products and lightly on clean, sustainable products. Local and central governments should reform economy evaluation systems by introducing Green GDP accounting in public administration. Finally, the sustainable production should include recycling economy patterns that change the material flow from the traditional linear mode of natural resource/product/pollutant, to the new loop of natural resource/industrial product/recycled resource
- …