13 research outputs found

    p53 regulates mitochondrial dynamics in vascular smooth muscle cell calcification.

    Get PDF
    Arterial calcification is an important characteristic of cardiovascular disease. It has key parallels with skeletal mineralization; however, the underlying cellular mechanisms responsible are not fully understood. Mitochondrial dynamics regulate both bone and vascular function. In this study, we therefore examined mitochondrial function in vascular smooth muscle cell (VSMC) calcification. Phosphate (Pi)-induced VSMC calcification was associated with elongated mitochondria (1.6-fold increase, p p p p p p p p p p p p p p < 0.001) was also observed upon p53 knockdown in calcifying VSMCs. In summary, we demonstrate that VSMC calcification promotes notable mitochondrial elongation and cellular senescence via DRP1 phosphorylation. Furthermore, our work indicates that p53-induced mitochondrial fusion underpins cellular senescence by reducing mitochondrial function

    Mesenchymal-specific Alms1 knockout in mice recapitulates metabolic features of Alström syndrome

    Get PDF
    For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.Peer reviewe

    Mitochondrial dysfunction and mitophagy blockade contribute to renal osteodystrophy in chronic kidney disease-mineral bone disorder

    Get PDF
    Chronic kidney disease–mineral and bone disorder (CKD-MBD) presents with extra-skeletal calcification and renal osteodystrophy (ROD). The origins of ROD likely lie with elevated uremic toxins and/or an altered hormonal profile but the cellular events responsible remain unclear. Here, we report that stalled mitophagy contributes to mitochondrial dysfunction in bones of a CKD-MBD mouse model, and also human CKD-MBD patients. RNA-seq analysis exposed an altered expression of genes associated with mitophagy and mitochondrial function in tibia of CKD-MBD mice. The accumulation of damaged osteocyte mitochondria and the expression of mitophagy regulators, p62/SQSTM1, ATG7 and LC3 was inconsistent with functional mitophagy, and in mito-QC reporter mice with CKD-MBD, there was a 2.3-fold increase in osteocyte mitolysosomes. Altered expression of mitophagy regulators in human CKD-MBD bones was also observed. To determine if uremic toxins were possibly responsible for these observations, indoxyl sulfate treatment of osteoblasts revealed mitochondria with distorted morphology and whose membrane potential and oxidative phosphorylation were decreased, and oxygen-free radical production increased. The altered p62/SQSTM1 and LC3-II expression was consistent with impaired mitophagy machinery and the effects of indoxyl sulfate were reversible by rapamycin. In conclusion, mitolysosome accumulation from impaired clearance of damaged mitochondria may contribute to the skeletal complications, characteristic of ROD. Targeting mitochondria and the mitophagy process may therefore offer novel routes for intervention to preserve bone health in patients with ROD. Such approaches would be timely as our current armamentarium of anti-fracture medications has not been developed for, or adequately studied in, patients with severe CKD-MBD

    Truncation of Pik3r1 causes severe insulin resistance uncoupled from obesity and dyslipidaemia by increased energy expenditure.

    Get PDF
    OBJECTIVE: Insulin signalling via phosphoinositide 3-kinase (PI3K) requires PIK3R1-encoded regulatory subunits. C-terminal PIK3R1 mutations cause SHORT syndrome, as well as lipodystrophy and insulin resistance (IR), surprisingly without fatty liver or metabolic dyslipidaemia. We sought to investigate this discordance. METHODS: The human pathogenic Pik3r1 Y657∗ mutation was knocked into mice by homologous recombination. Growth, body composition, bioenergetic and metabolic profiles were investigated on chow and high-fat diet (HFD). We examined adipose and liver histology, and assessed liver responses to fasting and refeeding transcriptomically. RESULTS: Like humans with SHORT syndrome, Pik3r1WT/Y657∗ mice were small with severe IR, and adipose expansion on HFD was markedly reduced. Also as in humans, plasma lipid concentrations were low, and insulin-stimulated hepatic lipogenesis was not increased despite hyperinsulinemia. At odds with lipodystrophy, however, no adipocyte hypertrophy nor adipose inflammation was found. Liver lipogenic gene expression was not significantly altered, and unbiased transcriptomics showed only minor changes, including evidence of reduced endoplasmic reticulum stress in the fed state and diminished Rictor-dependent transcription on fasting. Increased energy expenditure, which was not explained by hyperglycaemia nor intestinal malabsorption, provided an alternative explanation for the uncoupling of IR from dyslipidaemia. CONCLUSIONS: Pik3r1 dysfunction in mice phenocopies the IR and reduced adiposity without lipotoxicity of human SHORT syndrome. Decreased adiposity may not reflect bona fide lipodystrophy, but rather, increased energy expenditure, and we suggest that further study of brown adipose tissue in both humans and mice is warranted

    Modulators of UCP1-dependent thermogenesis : Glucocorticoids, diet and novel research models

    No full text
    The activation and recruitment of brown adipose tissue (BAT) thermogenesis has been put forward as a promising strategy to reduce the disease burden of obesity and obesity-related diseases. Heat production by BAT can be attributed to the tissue-specific mitochondrial uncoupling protein 1 (UCP1). Upon activation, UCP1 uncouples substrate oxidation from ATP production, thereby dissipating energy solely as heat and thus facilitating the ‘wasting’ of energy. To date, cold exposure is the strongest known BAT activator. However, to harness the energy wasting potential of BAT as a weight-reducing agent, the search for alternative factors that alter the activation or recruitment state of BAT is ongoing. The goal of this thesis is to obtain a better understanding of compounds and processes that modulate UCP1-dependent thermogenesis.  We investigate glucocorticoids for their potential to alter the UCP1-dependent thermogenic capacity of mice. We provide the novel insight that glucocorticoid supplementation reduces total BAT UCP1 protein levels, but only in mice housed at thermoneutrality. This reduction occurs at the transcriptional level by direct binding of the liganded glucocorticoid receptor to Ucp1regulatory regions. We also demonstrate that the glucocorticoid-induced reduction in BAT thermogenesis does not contribute to the development of glucocorticoid-induced obesity. Further, we show that high-fat diet- and cafeteria diet-feeding induces the activation and recruitment of BAT UCP1 protein in the obesity-resistant 129S mouse strain. We demonstrate the importance of this diet-induced modulation of BAT thermogenic capacity by reporting an increased metabolic efficiency in UCP1-ablated mice compared to wild-type mice.  We finally present two novel models that can be used for the identification of novel modulators of BAT thermogenesis, namely a brown adipocyte clonal cell line derived from adult human BAT, and a UCP1-luciferase reporter mouse which facilitates real-time tracking of endogenous Ucp1expression. Using these models, we identify the genes Mtus1and Kcnk3, and the compound WWL113, as novel modulators of UCP1-dependent thermogenesis. At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 2: Manuscript. Paper 5: Manuscript.</p

    Thermogenic recruitment of brown and brite/beige adipose tissues is not obligatorily associated with macrophage accretion or attrition

    No full text
    International audienceCold- and diet-induced recruitment of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT) are dynamic processes, and the recruited state attained is a state of dynamic equilibrium, demanding continuous stimulation to be maintained. An involvement of macrophages, classical proinflammatory (M1) or alternatively activated anti-inflammatory (M2), is presently discussed as being an integral part of these processes. If these macrophages play a mediatory role in the recruitment process, such an involvement would have to be maintained in the recruited state. We have, therefore, investigated whether the recruited state of these tissues is associated with macrophage accretion or attrition. We found no correlation (positive or negative) between total UCP1 mRNA levels (as a measure of recruitment) and proinflammatory macrophages in any adipose depot. We found that in young chow-fed mice, cold-induced recruitment correlated with accretion of anti-inflammatory macrophages; however, such a correlation was not seen when cold-induced recruitment was studied in diet-induced obese mice. Furthermore, the anti-inflammatory macrophage accretion was mediated via β1/β2-adrenergic receptors; yet, in their absence, and thus in the absence of macrophage accretion, recruitment proceeded normally. We thus conclude that the classical recruited state in BAT and inguinal (brite/beige) WAT is not paralleled by macrophage accretion or attrition. Our results make mediatory roles for macrophages in the recruitment process less likely

    Thermogenic recruitment of brown and brite/beige adipose tissues is not obligatorily associated with macrophage accretion or attrition

    No full text
    International audienceCold- and diet-induced recruitment of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT) are dynamic processes, and the recruited state attained is a state of dynamic equilibrium, demanding continuous stimulation to be maintained. An involvement of macrophages, classical proinflammatory (M1) or alternatively activated anti-inflammatory (M2), is presently discussed as being an integral part of these processes. If these macrophages play a mediatory role in the recruitment process, such an involvement would have to be maintained in the recruited state. We have, therefore, investigated whether the recruited state of these tissues is associated with macrophage accretion or attrition. We found no correlation (positive or negative) between total UCP1 mRNA levels (as a measure of recruitment) and proinflammatory macrophages in any adipose depot. We found that in young chow-fed mice, cold-induced recruitment correlated with accretion of anti-inflammatory macrophages; however, such a correlation was not seen when cold-induced recruitment was studied in diet-induced obese mice. Furthermore, the anti-inflammatory macrophage accretion was mediated via β1/β2-adrenergic receptors; yet, in their absence, and thus in the absence of macrophage accretion, recruitment proceeded normally. We thus conclude that the classical recruited state in BAT and inguinal (brite/beige) WAT is not paralleled by macrophage accretion or attrition. Our results make mediatory roles for macrophages in the recruitment process less likely

    Female Alms1-deficient mice develop echocardiographic features of adult but not infantile Alström Syndrome cardiomyopathy

    Get PDF
    Alström Syndrome (AS), a multisystem disorder caused by biallelic ALMS1 mutations, features major early morbidity and mortality due to cardiac complications. These are biphasic, including infantile dilated cardiomyopathy and distinct adult-onset cardiomyopathy, and are poorly understood. We assessed cardiac function of Alms1 knockout mice by echocardiography. Cardiac function was unaltered in global Alms1 knockout mice of both sexes at postnatal day 15 (P15) and 8 weeks. At 23 weeks, female, but not male knockout mice showed increased left atrial area and decreased isovolumic relaxation time, consistent with early restrictive cardiomyopathy, as well as reduced ejection fraction. No histological or transcriptional changes were seen in myocardium of 23-week-old female Alms1 global knockout mice. Female mice with Pdgfrα-Cre-driven Alms1 deletion in cardiac fibroblasts and a small proportion of cardiomyocytes did not recapitulate the phenotype of global knockout at 23 weeks. In conclusion, adult female, but not male, Alms1-deficient mice show echocardiographic evidence of cardiac dysfunction, consistent with the cardiomyopathy of AS. The explanation for sexual dimorphism remains unclear, but may involve metabolic or endocrine differences between sexes
    corecore