85 research outputs found

    HRAS is silenced by two neighboring G-quadruplexes and activated by MAZ, a zinc-finger transcription factor with DNA unfolding activity

    Get PDF
    The HRAS promoter contains immediately upstream of the transcription start site two neighboring G-elements, each capable of folding into a G-quadruplex structure. We have previously found that these G-quadruplexes bind to the zinc-finger transcription factors MAZ and Sp1. In the present study we have examined the interaction between the HRAS promoter and MAZ, demonstrating for the first time that the protein unfolds the G-quadruplex structures. We also demonstrate that MAZ-GST, in the presence of the complementary strands, promotes a rapid transformation of the two HRAS quadruplexes into duplexes. By a mutational analysis of the HRAS G-elements, we dissected the MAZ-binding sites from the quadruplex-forming motifs, finding that the two neighboring G-quadruplexes bring about a dramatic repression of transcription, in a synergistic manner. We also discovered that the two G-quadruplexes are strong targets for small anticancer molecules. We found that a cell-penetrating anthratiophenedione (ATPD-1), which binds tightly to the G-quadruplexes (ΔT > 15°C), promotes the total extinction of HRAS transcription. In contrast, when one of the two G-quadruplexes was abrogated by point mutations, ATPD-1 repressed transcription by only 50%. Our study provides relevant information for the rationale design of targeted therapy drugs specific for the HRAS oncogene

    G4-DNA formation in the HRAS promoter and rational design of decoy oligonucleotides for cancer therapy.

    Get PDF
    HRAS is a proto-oncogene involved in the tumorigenesis of urinary bladder cancer. In the HRAS promoter we identified two G-rich elements, hras-1 and hras-2, that fold, respectively, into an antiparallel and a parallel quadruplex (qhras-1, qhras-2). When we introduced in sequence hras-1 or hras-2 two point mutations that block quadruplex formation, transcription increased 5-fold, but when we stabilized the G-quadruplexes by guanidinium phthalocyanines, transcription decreased to 20% of control. By ChIP we found that sequence hras-1 is bound only by MAZ, while hras-2 is bound by MAZ and Sp1: two transcription factors recognizing guanine boxes. We also discovered by EMSA that recombinant MAZ-GST binds to both HRAS quadruplexes, while Sp1-GST only binds to qhras-1. The over-expression of MAZ and Sp1 synergistically activates HRAS transcription, while silencing each gene by RNAi results in a strong down-regulation of transcription. All these data indicate that the HRAS G-quadruplexes behave as transcription repressors. Finally, we designed decoy oligonucleotides mimicking the HRAS quadruplexes, bearing (R)-1-O-[4-(1-Pyrenylethynyl) phenylmethyl] glycerol and LNA modifications to increase their stability and nuclease resistance (G4-decoys). The G4-decoys repressed HRAS transcription and caused a strong antiproliferative effect, mediated by apoptosis, in T24 bladder cancer cells where HRAS is mutated

    Circular Dichroism as a Tool of Investigation in the B-Z Transition of DNA

    Get PDF
    Some useful CD applications aiming to investigate the B-Z conformational change in nucleic acids as well as their inter actions with a ruthenium complex of potential terapeutic interest are described in this paper. The results presented here regard: a) the energetics of the conformational transition from the B right-handed to the Z left-handed helix in synthetic oligodeoxynucleotides with a cytosine-guanine alternating sequence; b) The B to Z transition for sequences containing all four canonical bases and the role of nickel ions and sodium perchlorate in promoting this tranformation; c) the inter action of Ru(II)(DMSO)4CI2a. compound exhibiting a good antitumor activity in animals, with both mononucleosides and polynucleotides

    Interleukin 1 receptor antagonist gene variable number of tandem repeats polymorphism and cutaneous melanoma

    Get PDF
    Immunity and cytokines serve crucial roles in cutaneous melanoma. The present study investigated whether a variable number tandem repeat (VNTR) polymorphism of interleukin-1 receptor antagonist (IL-1RA) gene (IL-1RN) located in intron 2 (rs2234663) is associated with cutaneous melanoma. A total of 515 subjects were studied, 133 of which were cutaneous melanoma cases (72 stage I+II non-metastatic melanoma cases and 61 stage III+IV metastatic melanoma cases), and 382 subjects were matching healthy controls from the Friuli-Venezia-Giulia Region located in Northeast Italy, an area with a high melanoma incidence. The IL-1RN-VNTR polymorphism was determined by DNA fragment length analysis following PCR amplification. According to the number of 86-bp repeats, five different IL-1RN alleles were identified: Allele 1 (4-repeats), allele 2 (2-repeats, short allele), allele 3 (5-repeats), allele 4 (3-repeats) and allele 5 (6-repeats). Alleles with three or more 86-bp repeats, i.e. allele 1, 3, 4 and 5 were collectively denoted as long (L) repeats. The present study revealed that IL-1RN-VNTR 1/2 and 2/L genotypes were more frequent among patients with cutaneous melanoma (43.6 and 45.1%, respectively) compared with healthy controls [29.6 and 30.6%, respectively; odds ratio (OR), 1.84; CI, 1.22-2.77; P=0.003; and OR, 1.66; CI, 1.24-2.79; P=0.002, respectively]. Conversely, the IL-1RN-VNTR 1/1 genotype was less frequent among melanoma cases (45.9%) compared with healthy controls (57.9%; OR, 0.62; CI, 0.41-0.92; P=0.017). Comparison of metastatic vs. non-metastatic melanoma cases identified no significant differences. The present study first demonstrated that carriage of the 1/1 IL-1RN-VNTR genotype was protective, whereas 1/2 and 2/L was a risk factor for patients with cutaneous melanoma vs. healthy controls. The short allele 2 was associated with higher expression levels of IL-1RA, a potent competitive inhibitor of the proinflammatory cytokines IL-1\u3b1 and IL-1\u3b2. VNTR-IL-1RN polymorphism may affect susceptibility to melanoma and, thus, it is a potential novel diagnostic biomarker for melanoma. The present study increased the understanding of genetic melanoma susceptibility/carcinogenesis, and may indicate novel strategies in the personalized prevention of cutaneous melanoma

    Circular Dichroism as a Tool of Investigation in the B-Z Transition of DNA

    Get PDF
    Some useful CD applications aiming to investigate the B-Z conformational change in nucleic acids as well as their inter actions with a ruthenium complex of potential terapeutic interest are described in this paper. The results presented here regard: a) the energetics of the conformational transition from the B right-handed to the Z left-handed helix in synthetic oligodeoxynucleotides with a cytosine-guanine alternating sequence; b) The B to Z transition for sequences containing all four canonical bases and the role of nickel ions and sodium perchlorate in promoting this tranformation; c) the inter action of Ru(II)(DMSO)4CI2a. compound exhibiting a good antitumor activity in animals, with both mononucleosides and polynucleotides

    Molecular models for intrastrand DNA G-quadruplexes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Independent surveys of human gene promoter regions have demonstrated an overrepresentation of G<sub>3</sub>X<sub><it>n</it>1</sub>G3X<sub><it>n</it>2</sub>G<sub>3</sub>X<sub><it>n</it>3</sub>G<sub>3 </sub>motifs which are known to be capable of forming intrastrand quadruple helix structures. In spite of the widely recognized importance of G-quadruplex structures in gene regulation and growing interest around this unusual DNA structure, there are at present only few such structures available in the Nucleic Acid Database. In the present work we generate by molecular modeling feasible G-quadruplex structures which may be useful for interpretation of experimental data.</p> <p>Results</p> <p>We have used all quadruplex DNA structures deposited in the Nucleic Acid Database in order to select a list of fragments entailing a strand of three adjacent G's paired with another strand of three adjacent G's separated by a loop of one to four residues. These fragments were further clustered and representative fragments were finally selected. Further fragments were generated by assemblying the two strands of each fragment with loops from different fragments whenever the anchor G's were superimposable. The fragments were used to assemble G quadruplex based on a superimposability criterion.</p> <p>Conclusion</p> <p>Molecular models have been generated for a large number of G<sub>3</sub>X<sub><it>n</it>1</sub>G<sub>3</sub>X<sub><it>n</it>2</sub>G3X<sub><it>n</it>3</sub>G<sub>3 </sub>sequences. For a given sequence not all topologies are possible with the available repertoire of fragments due to steric hindrance and low superimposability. Since all molecular models are generated by fragments coming from observed quadruplex structures, molecular models are in principle reliable and may be used for interpretation of experimental data. Some examples of applications are given.</p

    Antiviral Activity of the G-Quadruplex Ligand TMPyP4 against Herpes Simplex Virus-1

    Get PDF
    The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that specifically interact with G4s have been shown to inhibit HSV-1 DNA replication. We here investigated the antiviral activity of TMPyP4, a porphyrin known to interact with G4s. The analogue TMPyP2, with lower G4 affinity, was used as control. We showed by biophysical analysis that TMPyP4 interacts with HSV-1 G4s, and inhibits polymerase progression in vitro; in infected cells, it displayed good antiviral activity which, however, was independent of inhibition of virus DNA replication or entry. At low TMPyP4 concentration, the virus released by the cells was almost null, while inside the cell virus amounts were at control levels. TEM analysis showed that virus particles were trapped inside cytoplasmatic vesicles, which could not be ascribed to autophagy, as proven by RT-qPCR, western blot, and immunofluorescence analysis. Our data indicate a unique mechanism of action of TMPyP4 against HSV-1, and suggest the unprecedented involvement of currently unknown G4s in viral or antiviral cellular defense pathways

    Conjugated PDT drug: photosensitizing activity and tissue distribution of PEGylated pheophorbide a.

    Get PDF
    The design of new photosensitizers with enhanced phototoxicity and pharmacokinetic properties remains a central challenge for cancer photodynamic therapy (PDT). In this study, Pheophorbide a (Pba) has been pegylated to methoxypolyethylene glycol (mPE G-Pba) to produce a soluble photosensitizer that exhibits a higher tissue distribution than free Pba. In vitro studies have shown that mPE G-Pba promotes a fairly strong photosensitizing effect in cancer cells, as previously observed for the unpegylated molecule. mPE G-Pba targets the mitochondria where, following photoactivation, ROS are produced which cause a cellular injury by lipid peroxidation. The effect of pegylation on the photosensitizer biodistribution has been examined in different selected organs of female mice, at different time points after intraperitoneal administration of the drug (50 μmol/Kg body weight). Other than free Pba, which showed a low tissue accumulation, mPE G-Pba has been detected in significant amounts (8 to 16 μg/ml) in liver, spleen, duodenum and kidney and, 3-5 hours after intraperitoneal injection, in moderate amounts (3 to 8 μg/ml) in brain and lung. In vivo optical imaging performed on living female C57/BL6 mice bearing a subcutaneous melanoma mass, showed that injected mPEG-Pba distributes all over the body, with an higher uptake in the tumor respect to free Pba. Our results indicate that although pegylation somewhat decreases the phototoxicity, it significantly increases the drug solubility and tissue distribution and tumor uptake of mPE G-Pba, making the conjugate an interesting photosensitizer for PDT

    Photosensitization of pancreatic cancer cells by cationic alkyl-porphyrins in free form or engrafted into POPC liposomes: The relationship between delivery mode and mechanism of cell death

    Get PDF
    Cationic porphyrins bearing an alkyl side chain of 14 (2b) or 18 (2d) carbons dramatically inhibit proliferation of pancreatic cancer cells following treatment with light. We have compared two different ways of delivering porphyrin 2d: either in free form or engrafted into palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes (L-2d). Cell cytometry shows that while free 2d is taken up by pancreatic cancer cells by active (endocytosis) and passive (membrane fusion) transports, L-2d is internalized solely by endocytosis. Confocal microscopy showed that free 2d co-localizes with the cell membrane and lysosomes, whereas L-2d partly co-localizes with lysosomes and ER. It is found that free 2d inhibits the KRAS-Nrf2-GPX4 axis and strongly triggers lipid peroxidation, resulting in cell death by ferroptosis. By contrast, L-2d does not affect the KRAS-Nrf2-GPX4 axis and activates cell death mainly through apoptosis. Overall, our study demonstrates for the first time that cationic alkyl porphyrins, which have a IC50 ~ 23 nM, activate a dual mechanism of cell death, ferroptosis and apoptosis, where the predominant form depends on the delivery mode

    Purine twisted-intercalating nucleic acids: a new class of anti-gene molecules resistant to potassium-induced aggregation

    Get PDF
    Sequence-specific targeting of genomic DNA by triplex-forming oligonucleotides (TFOs) is a promising strategy to modulate in vivo gene expression. Triplex formation involving G-rich oligonucleotides as third strand is, however, strongly inhibited by potassium-induced TFO self-association into G-quartet structures. We report here that G-rich TFOs with bulge insertions of (R)-1-O-[4-(1-pyrenylethynyl)-phenylmethyl] glycerol (called twisted intercalating nucleic acids, TINA) show a much lower tendency to aggregate in potassium than wild-type analogues do. We designed purine-motif TINA–TFOs for binding to a regulatory polypurine-polypyrimidine (pur/pyr) motif present in the promoter of the KRAS proto-oncogene. The binding of TINA–TFOs to the KRAS target has been analysed by electrophoresis mobility shift assays and DNase I footprinting experiments. We discovered that in the presence of potassium the wild-type TFOs did not bind to the KRAS target, differently from the TINA analogues, whose binding was observed up to 140 mM KCl. The designed TINA–TFOs were found to abrogate the formation of a DNA–protein complex at the pur/pyr site and to down-regulate the transcription of CAT driven by the murine KRAS promoter. Molecular modelling of the DNA/TINA–TFO triplexes are also reported. This study provides a new and promising approach to create TFOs to target in vivo the genome
    corecore