75 research outputs found

    PEPI Lab: a flexible compact multi-modal setup for X-ray phase-contrast and spectral imaging

    Get PDF
    This paper presents a new flexible compact multi-modal imaging setup referred to as PEPI (Photon-counting Edge-illumination Phase-contrast imaging) Lab, which is based on the edge-illumination (EI) technique and a chromatic detector. The system enables both X-ray phase-contrast (XPCI) and spectral (XSI) imaging of samples on the centimeter scale. This work conceptually follows all the stages in its realization, from the design to the first imaging results. The setup can be operated in four different modes, i.e. photon-counting/conventional, spectral, double-mask EI, and single-mask EI, whereby the switch to any modality is fast, software controlled, and does not require any hardware modification or lengthy re-alignment procedures. The system specifications, ranging from the X-ray tube features to the mask material and aspect ratio, have been quantitatively studied and optimized through a dedicated Geant4 simulation platform, guiding the choice of the instrumentation. The realization of the imaging setup, both in terms of hardware and control software, is detailed and discussed with a focus on practical/experimental aspects. Flexibility and compactness (66 cm source-to-detector distance in EI) are ensured by dedicated motion stages, whereas spectral capabilities are enabled by the Pixirad-1/Pixie-III detector in combination with a tungsten anode X-ray source operating in the range 40-100 kVp. The stability of the system, when operated in EI, has been verified, and drifts leading to mask misalignment of less than 1 [Formula: see text]m have been measured over a period of 54 h. The first imaging results, one for each modality, demonstrate that the system fulfills its design requirements. Specifically, XSI tomographic images of an iodine-based phantom demonstrate the system's quantitativeness and sensibility to concentrations in the order of a few mg/ml. Planar XPCI images of a carpenter bee specimen, both in single and double-mask modes, demonstrate that refraction sensitivity (below 0.6 [Formula: see text]rad in double-mask mode) is comparable with other XPCI systems based on microfocus sources. Phase CT capabilities have also been tested on a dedicated plastic phantom, where the phase channel yielded a 15-fold higher signal-to-noise ratio with respect to attenuation

    Effects of Musical Classes on Motor Creativity According to Age, Sex, and Weight Status in Young Students: A Music-Oriented versus Conventional Education Plan

    Get PDF
    Motor creativity can be influenced by the specificity of the school–class environments (music-based education plans) and individual characteristics. This study aimed to investigate the effects of music oriented and conventional education plans on rhythmic perceptive capacity, motor creativity, and skill- and health-related fitness components in young students according to age, sex, and weight status. One hundred sixty-three young Italian students from elementary (second and fourth grade) and middle school (sixth and eighth grade) were enrolled in the study according to their education plan (music oriented or conventional). All participants were tested for rhythmic perceptive capacity (Stambak’s test), motor creativity (Divergent Movement Ability test), skill-related (Körperkoordinationstest Für Kinder), and health-related (Multistage Fitness test) components. Individuals were also considered according to age (elementary and middle school), sex, and weight status. Significant age × education plan and sex × education plan interactions (p < 0.01) were found in motor creativity (locomotor and stability skills) and motor competence (balance and jumping-like activities). No significant weight status × education plan interaction was found. The predominant role of music in the music-oriented education plan appeared to foster the ability to enhance motor creativity in elementary and middle school students compared to the conventional plan. Moreover, music-oriented experience also seems relevant for expressing and exhibiting motor competence (i.e., balance) in relation to sex

    A simplified edge illumination set-up for quantitative phase contrast mammography with synchrotron radiation at clinical doses

    Get PDF
    This work presents the first study of x-ray phase contrast imaging based on a simple implementation of the edge illumination method (EIXPCi) in the field of mammography with synchrotron radiation. A simplified EIXPCi set-up was utilized to study a possible application in mammography at clinical doses. Moreover, through a novel algorithm capable of separating and quantifying absorption and phase perturbations of images acquired in EIXPCi modality, it is possible to extract quantitative information on breast images, allowing an accurate tissue identification. The study was carried out at the SYRMEP beamline of Elettra synchrotron radiation facility (Trieste, Italy), where a mastectomy specimen was investigated with the EIXPCi technique. The sample was exposed at three different energies suitable for mammography with synchrotron radiation in order to test the validity of the novel algorithm in extracting values of linear attenuation coefficients integrated over the sample thickness. It is demonstrated that the quantitative data are in good agreement with the theoretical values of linear attenuation coefficients calculated on the hypothesis of the breast with a given composition. The results are promising and encourage the current efforts to apply the method in mammography with synchrotron radiation

    Acute effects of a combat sport environment on self-control and pain perception inhibition: a preliminary study in a new ecological framework

    Get PDF
    Intense sports activities affect cognitive, perceptual, and physiological domains, possibly concurring in reducing pain perception and anxiety. Within a framework for a new socio-ecological narrative that considers opposition (such as fighting) and collaboration (cooperative learning) as carriers of self-control and pain perception inhibition, we investigated the acute effects of a judo-specific session on cognitive (inhibitory control and simple reaction time), perceptual (pain and fatigue), affective (anxiety) and physiological (hormone profile) domains. Eleven male black belt judokas (age 39.0 ± 13.9 years; training experience: 23.2 ± 14.4 years) were recruited and tested before and after judo randori and resting sessions. Inhibitory control and simple reaction time were assessed via the Flanker task and clinical reaction time test, pain and fatigue were assessed using Borg’s category-ratio scale (CR-10), and the state–trait anxiety inventory Y-1 test assessed anxiety. Glucose, insulin, cortisol, creatinine, and irisin levels were measured. Cognitive performance, perception of fatigue and physiological variables increased after randori bouts, while pain decreased. Inhibitory control, perception of pain, perception of fatigue and glucose, cortisol, and creatinine significantly differed (p &lt; 0.05) between randori and resting sessions. A high-intensity randori may induce acute beneficial effects on cognitive, perceptual, and physiological domains. Further studies should compare the results with the outcomes from a collaborative and non-agonist environment and confirm the socio-ecologic framework

    Clinical study in phase- contrast mammography: image-quality analysis

    Get PDF
    The first clinical study of phase-contrast mammography (PCM) with synchrotron radiation was carried out at the Synchrotron Radiation for Medical Physics beamline of the Elettra synchrotron radiation facility in Trieste (Italy) in 2006–2009. The study involved 71 patients with unresolved breast abnormalities after conventional digital mammography and ultrasonography exams carried out at the Radiology Department of Trieste University Hospital. These cases were referred for mammography at the synchrotron radiation facility, with images acquired using a propagation-based phase-contrast imaging technique. To investigate the contribution of phase-contrast effects to the image quality, two experienced radiologists specialized in mammography assessed the visibility of breast abnormalities and of breast glandular structures. The images acquired at the hospital and at the synchrotron radiation facility were compared and graded according to a relative seven-grade visual scoring system. The statistical analysis highlighted that PCM with synchrotron radiation depicts normal structures and abnormal findings with higher image quality with respect to conventional digital mammography

    Effects of cognitive load and different exercise intensities on perceived effort in sedentary university students: a follow up of the Cubo Fitness Test validation

    Get PDF
    Work and intellectually fatiguing environments can significantly influence the health of individuals, which is strictly bound to motor efficiency. In particular, desk workers and university students may have a sedentary lifestyle and a condition of mental fatigue caused by daily routine, which could impair motor efficiency. The assessment is a starting point for enhancing awareness of the individual’s psychophysical condition through the perception of one’s body motor efficiency, motivating to move towards improvement. This way, a submaximal test based on perceived exertion was developed (Cubo Fitness Test, CFT) and validated in previous studies. Hence, two further studies were employed to enhance the consistency and accuracy of this instrument in different conditions. The first study investigated the internal responsiveness of CFT, evaluating if mental fatigue could affect motor efficiency. The second study investigated which perceived intensity (weak, moderate, strong, or absolute maximum) could be more reliable for applying the CFT (as previous research focused the investigation only on moderate intensity). In the first investigation, participants assessed two stimuli (mental fatigue induced with a Stroop color-word task and a neutral condition based on the vision of a documentary) lasting 60 min each. The quality of psychophysical recovery (total quality recovery) and the mood state (Italian Mood State questionnaire) were evaluated before the stimuli. After the fatiguing or the neutral task, the mood state was newly assessed, together with the evaluation of the workload’s characteristics (Nasa TLX) and the CFT motor efficiency. In the second investigation, participants had to perform CFT twice for each at different intensities of Borg’s Scale of perceived exertion. Researchers successfully requested to fill out the NASA TLX questionnaire regarding the perceived workload characteristics of CFT, and the reliability of each intensity was assessed. Results seem to enhance the consistency and the accuracy of the instrument. Indeed, findings evidenced that CFT is not influenced by mental fatigue conditions typical of the intellectual work of desk workers and university students for which this test was specifically conceived. Moreover, moderate and strong perceived intensity are the most adequate conditions to assess motor efficiency in these populations

    Phase-contrast breast CT: the effect of propagation distance

    Get PDF
    X-ray phase imaging has the potential to dramatically improve soft tissue contrast sensitivity, which is a crucial requirement in many diagnostic applications such as breast imaging. In this context, a program devoted to perform in-vivo phase-contrast synchrotron radiation breast computed tomography is ongoing at the Elettra facility (Trieste, Italy). The used phase-contrast technique is the propagation-based configuration, which requires a spatially coherent source and a sufficient object-to-detector distance. In this work the effect of this distance on image quality is quantitatively investigated scanning a large breast surgical specimen at 3 object-to-detector distances (1.6, 3, 9 m) and comparing the images both before and after applying the phase-retrieval procedure. The sample is imaged at 30 keV with a 60 \ub5m pixel pitch CdTe single-photon-counting detector, positioned at a fixed distance of 31.6~m from the source. The detector fluence is kept constant for all acquisitions. The study shows that, at the largest distance, a 20-fold SNR increase can be obtained by applying the phase-retrieval procedure. Moreover, it is shown that, for phase-retrieved images, changing the object-to-detector distance does not affect spatial resolution while boosting SNR (4-fold increase going from the shortest to the largest distance). The experimental results are supported by a theoretical model proposed by other authors, whose salient results are presented in this paper

    High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography

    Get PDF
    Acellular scaffolds obtained via decellularization are a key instrument in regenerative medicine both per se and to drive the development of future-generation synthetic scaffolds that could become available off-the-shelf. In this framework, imaging is key to the understanding of the scaffolds\u2019 internal structure as well as their interaction with cells and other organs, including ideally post-implantation. Scaffolds of a wide range of intricate organs (esophagus, lung, liver and small intestine) were imaged with x-ray phase contrast computed tomography (PC-CT). Image quality was sufficiently high to visualize scaffold microarchitecture and to detect major anatomical features, such as the esophageal mucosal-submucosal separation, pulmonary alveoli and intestinal villi. These results are a long-sought step for the field of regenerative medicine; until now, histology and scanning electron microscopy have been the gold standard to study the scaffold structure. However, they are both destructive: hence, they are not suitable for imaging scaffolds prior to transplantation, and have no prospect for post-transplantation use. PC-CT, on the other hand, is non-destructive, 3D and fully quantitative. Importantly, not only do we demonstrate achievement of high image quality at two different synchrotron facilities, but also with commercial x-ray equipment, which makes the method available to any research laboratory

    X-ray detection of structural orientation in human articular cartilage

    Get PDF
    AbstractObjective: To determine the feasibility of detecting the structural orientation in cartilage with Diffraction Enhanced X-Ray Imaging.Design: Human tali and femoral head specimens were Diffraction Enhanced X-Ray Imaged (DEI) at the SYRMEP beamline at Elettra at various energy levels to detect the architectural arrangement of collagen within cartilage. DEI utilizes a monochromatic and highly collimated beam, with an analyzer crystal that selectively weights out photons according to the angle they have been deviated with respect to the original direction. This provides images of very high contrast, and with the rejection of X-ray scatter.Results: DEI allowed the visualization of articular cartilage and a structural orientation, resembling arcades, within.Conclusion: Our diffraction enhanced images represent the first radiographic detection of the structural orientation in cartilage. Our data are in line with previous studies on the structural organization of joint cartilage. They confirm the model of a vaulting system of collagen fiber bundles interrupted by proteoglycan aggregates

    A proposal for a quality control protocol in breast CT with synchrotron radiation

    Get PDF
    The SYRMA-3D collaboration is setting up the first clinical trial of phase-contrast breast CT with synchrotron radiation at the Elettra synchrotron facility in Trieste, Italy. In this communication, a quality control protocol for breast CT is proposed, and a first test of image quality measurements is performed by means of a custom-made radiographic phantom. Materials and methods A set of projections is acquired and used to perform a CT reconstruction of two selected portions of the phantom. Such portions contain a uniform layer of water and a set of radiographic inserts, respectively. Together, they allow to perform several image quality measurements, namely CT number linearity, reconstruction accuracy, uniformity, noise, and low contrast resolution. All measurements are repeated at different beam energies in the range of interest, and at two different dose values. Results Measurements show a good linearity in the soft tissue range, paired to a high accuracy of the CT number reconstruction. Uniformity and noise measurements show that reconstruction inhomogeneities are bound to a few percent of the average pixel values. However, low contrast detectability is limited to the higher portion of the explored energy range. Conclusions The results of the measurements are satisfactory in terms of their quality, feasibility and reproducibility. With minimal modifications, the phantom is promising to allow a set of image quality measurements to be used in the upcoming clinical trial
    • …
    corecore