32 research outputs found

    Biomass Production and Shoots Dynamics of Selected and Native Poplar Genotypes Growing Under Short Rotation Coppice

    Get PDF
    Poplars (Populus spp.) fast-growing species are widely used in short rotation forestry (SRF) where plantations are characterized by high stool and shoot density. Currently, much of the focus in short rotation forestry is on selecting species with high biomass production and specific traits that allow for the easier conversion of lignocellulosic raw material into biofuels or biopolymers. Will be present a comparative study of a set of traits related to lignocellulosic biomass productivity of sixteen genotypes and some related hybrids genotypes among the most commonly used in Short Rotation Coppices (SRC) with the main purpose of selecting suitable species to be grown in southern Italy

    Lengthening single-stem rotation improves biomass yield and water use efficiency in black poplar genotype multi-stem rotation coppice plantations

    Get PDF
    Poplar short rotation coppice (SRC) plantations have great potential for supplying environmentally friendly bio-based industries. However, little research has focussed on the linkages between SRC management regimes and the consumption of water for biomass production in the Mediterranean environment. Therefore, we compared six hybrid clones and four native black poplar genotypes with an aim to examine how two different lengthening periods (3 vs. 5 years) of single-stem rotation affected growth performance in the following three years of multi-stem rotation coppice. To achieve this goal, we assessed the aboveground dry biomass production and variation in water use efficiency (WUE) of the genotypes annually. A longer single-stem rotation increased biomass productivity and WUE in the multi-stem rotation of the native black poplar, rather than that of the hybrid genotypes. In contrast, biomass and WUE performances did not diverge between the native and hybrid genotypes under the shorter single-stem phase. These findings underline the importance of lengthening the rotation of single-stem SRC plantations in hot and dry Mediterranean climates. Native black poplar genotypes managed in SRC should be strongly considered as environmentally compatible genetic resources both in protected areas and in areas where water supply constrains biomass production

    The IASI Water Deficit Index to Monitor Vegetation Stress and Early Drying in Summer Heatwaves: An Application to Southern Italy

    Get PDF
    The boreal hemisphere has been experiencing increasing extreme hot and dry conditions over the past few decades, consistent with anthropogenic climate change. The continental extension of this phenomenon calls for tools and techniques capable of monitoring the global to regional scales. In this context, satellite data can satisfy the need for global coverage. The main objective we have addressed in the present paper is the capability of infrared satellite observations to monitor the vegetation stress due to increasing drought and heatwaves in summer. We have designed and implemented a new water deficit index (wdi) that exploits satellite observations in the infrared to retrieve humidity, air temperature, and surface temperature simultaneously. These three parameters are combined to provide the water deficit index. The index has been developed based on the Infrared Atmospheric Sounder Interferometer or IASI, which covers the infrared spectral range 645 to 2760 cm−1 with a sampling of 0.25 cm−1. The index has been used to study the 2017 heatwave, which hit continental Europe from May to October. In particular, we have examined southern Italy, where Mediterranean forests suffer from climate change. We have computed the index’s time series and show that it can be used to indicate the atmospheric background conditions associated with meteorological drought. We have also found a good agreement with soil moisture, which suggests that the persistence of an anomalously high water deficit index was an essential driver of the rapid development and evolution of the exceptionally severe 2017 droughts

    Climatic and anthropogenic factors explain the variability of Fagus sylvatica treeline elevation in fifteen mountain groups across the Apennines

    Get PDF
    Abstract Background Fagus sylvatica forms the treeline across the Apennines mountain range, with an average elevation of 1589 m a.s.l. Previous studies evidenced that the current position of the treeline in the Apennines is heavily depressed as a result of a complex interaction between climatic factors and the past human pressure. In this study we correlated treeline elevation in the fifteen major mountain groups in the Apennines with selected climatic, geomorphological, and human disturbance variables in order to investigate in detail the site-specific features affecting the current treeline distribution. Results Treeline elevation was lowest in the North Italy (Apuan Alps), while the highest treeline was found in Central Italy (Simbruini). An absolute maximum treeline elevation of F. sylvatica exceeding 2000 m a.s.l. was found on 13 mountain peaks in Central and Southern Italy. Noteworthy, treeline elevation was largely lower on warmer south-facing slopes compared to northern slopes, with values several hundred meters lower in the Gran Sasso and Velino-Sirente. Although the causes of this pattern are still unknown, we argue that treeline elevation on south-facing slopes may be limited by the combination of climatic constraints (i.e. summer drought) and human disturbance. Evidence of a pervasive anthropogenic effect depressing treeline elevation was found in the North (Apuan Alps) Central (Gran Sasso, Velino-Sirente, Sibillini) and Southern part of Apennines (Pollino). By contrast, treeline elevation of the Laga, Simbruini, and Orsomarso mountain groups appears less affected by past anthropogenic disturbance. Finally, we recorded in the several mountain groups (i.e. Majella, Marsicani and Pollino) the coexistence of very depressed treelines just a few kilometers away from much higher treelines, among the highest ever recorded for F. sylvatica. Conclusions Finally, we argue that F. sylvatica treeline across the Apennines is locally shaped both by the interaction of low temperatures experienced by the species in its earliest life stages in snow-free open spaces with summer soil water depletion and human disturbance

    Different pathways but same result? Comparing chemistry and biological effects of burned and decomposed litter

    Get PDF
    Litter burning and biological decomposition are oxidative processes co-occurring in many terrestrial ecosystems, producing organic matter with different chemical properties and differently affecting plant growth and soil microbial activity. Here, we tested the chemical convergence hypothesis (i.e. materials with different initial chemistry tend to converge towards a common profile, with similar biological effects, as the oxidative process advances) for burning and decomposition. We compared the molecular composition of 63 organic materials - 7 litter types either fresh, decomposed for 30, 90, 180 days, or heated at 100, 200, 300, 400, 500 \ub0C - as assessed by 13C NMR. We used litter water extracts (5% dw) as treatments in bioassays on plant (Lepidium sativum) and fungal (Aspergillus niger) growth, and a washed quartz sand amended with litter materials (0.5 % dw) to assess heterotrophic respiration by CO2 flux chamber. We observed different molecular variations for materials either burning (i.e. a sharp increase of aromatic C and a decrease of most other fractions above 200 \ub0C) or decomposing (i.e. early increase of alkyl, methoxyl and N-alkyl C and decrease of O-alkyl and di-O-alkyl C fractions). Soil respiration and fungal growth progressively decreased with litter age and temperature. Plant growth underwent an inhibitory effect by untreated litter, more and less rapidly released over decomposing and burning materials, respectively. Correlation analysis between NMR and bioassay data showed that opposite responses for soil respiration and fungi, compared to plants, are related to essentially the same C molecular types. Our findings suggest a functional convergence of decomposed and burnt organic substrates, emerging from the balance between the bioavailability of labile C sources and the presence of recalcitrant and pyrogenic compounds, oppositely affecting different trophic levels

    Wildfire promotes the invasion of Robinia pseudoacacia in the unmanaged Mediterranean Castanea sativa coppice forests

    Get PDF
    In the Mediterranean region of southern Europe, Castanea sativa Mill. (Castanea) coppice stands are being invaded by non-native pioneer tree species due to recurrent coppicing and wildfire disturbances. There is a need to control the spread of non-native tree species in Castanea coppices due to their pivotal socio-economic role, however, to facilitate this, further research into invasive strategies and their interactions with disturbances is required. The non-native Robinia pseudoacacia L. (Robinia) has widely colonized the overaged and unmanaged Castanea coppice forests in Vesuvius National Park, which were disturbed by the low-severity fires in the summer of 2017. Here, we aimed to assess the functional traits conferring a competitive advantage to the Robinia over Castanea and the changes in spatial stand patterns driven by wildfire disturbance. To achieve this we assessed the spatial stem patterns, regeneration strategies, and conducted field-assessments and remote sensing of the spring leaf phenology of both Castanea and Robinia in five 300–600 m2 plots. After the 2017 wildfire, root suckers constituted 72% (±12) of the Robinia vegetative living sprouts and occurred up to a distance of 10 m from the adult parent trees under the canopy of the Castanea trees. NDVI-based estimates at the start of the growing season (sos) in Castanea occurred over a 7 day period, from DOY 118–124, increasing at a rate (rsp) of 0.10–0.16, in agreement with the field-based assessment of spring leaf phenology. In Robinia, the sos estimated at DOY 109 from the NDVI seasonal trajectory disagreed with the field-based observations, which started later than Castanea, after approximately DOY 133. Here, the high percentage cover (∼90%) of the understory species influenced NDVI-based estimates of Robinia leaf spring phenology. The results suggest that low-severity wildfires increased the invasiveness of Robinia, and that vegetative regeneration strategies, rather than earlier spring phenology, conferred a competitive advantage in the fire-disturbed Castanea coppice stands. The results thus suggest that appropriate management of invasive Robinia trees to conserve the continuous canopy cover of Castanea stands should guide nature-based solutions to control the spread of non-native tree species

    Windstorm disturbance triggers multiple species invasion in an urban Mediterranean forest

    Get PDF
    Plant invasion in forest ecosystems is a serious ecological and economic issue, deserving attention by researchers, managers and policy-makers worldwide. Many invasive plants have been reported as early successional species able to colonize disturbed areas following abrupt changes in microhabitat and resource availability. We investigated disturbance effects of a severe windstorm generated by a wet microburst (hail and rain at 160 mm h-1) remarkably affecting the canopy cover of an old-growth Quercus ilex urban forest in Southern Italy. This stand-replacing disturbance produced a mosaic of 103 gaps, 5.6 to 1632 m2 in size, over an area of 1.53 ha, uprooting 76% of the trees and decreasing thereby 85% of the standing above-ground dry biomass into the gaps. By intensive monitoring we compared above- and below-ground microclimate, soil moisture and mineral N availability in paired disturbed and control areas of the study forest. Within newly formed gaps we observed a seasonally consistent 70% higher content of nitrate nitrogen, 29% and 47% decreases of ammonia nitrogen in summer and autumn, respectively, and a higher moisture in topsoil, in addition to different above- and below-ground microclimatic conditions, with canopy cover mitigating extreme temperatures. One year after the windstorm, the microhabitat shift promoted the establishment in gaps of 15 native and 10 alien taxa previously absent in both disturbed and control plots. In such conditions, the rarefaction of the dominant Q. ilex canopy cover and the occurrence of empty niches prone to invasion could dramatically affect the local community structure and diversity. Our data indicate that stand-replacing windstorm can transiently transform the studied urban evergreen forest to an early allogenic successional community dominated, in the medium and large gaps, by annual and perennial non-native species. This is particularly relevant under a perspective of possible increasing frequency of windstorm events in the Mediterranean region in the near future

    Effect over time of allopurinol on noise-induced hearing loss in guinea pigs.

    No full text
    Temporary threshold shift (TTS) and permanent threshold shift (PTS) may follow prolonged noise exposure. Several reports suggest that noise-induced damage to the cochlea may be related to the activity of reactive oxygen species (ROS). Drugs that scavenge or block ROS formation also protect the cochlea. Guinea pigs, treated with allopurinol, were exposed to white noise (120 dB SPL) or impulse noise (114 dB SPL) for 2 and 5 h. The protective effect of allopurinol was confirmed, but, at these levels of sound, it was present only after noise exposure up to 2 h. This study also offers evidence suggesting that allopurinol does not influence the establishment of PTS
    corecore