117 research outputs found

    Developing a catalogue of explainability methods to support expert and non-expert users.

    Get PDF
    Organisations face growing legal requirements and ethical responsibilities to ensure that decisions made by their intelligent systems are explainable. However, provisioning of an explanation is often application dependent, causing an extended design phase and delayed deployment. In this paper we present an explainability framework formed of a catalogue of explanation methods, allowing integration to a range of projects within a telecommunications organisation. These methods are split into low-level explanations, high-level explanations and co-created explanations. We motivate and evaluate this framework using the specific case-study of explaining the conclusions of field engineering experts to non-technical planning staff. Feedback from an iterative co-creation process and a qualitative evaluation is indicative that this is a valuable development tool for use in future company projects

    Empowering SMEs to make better decisions with Business Intelligence: A Case Study

    Get PDF
    With the advance of Business Information Systems (BIS), irrespective of the size, companies have adopted an approach to electronic data collection and management for two decades. The advancement in technology means they have in their possessions large volumes of historical data. Large organizations have cached on this and use a range of tools and techniques to leverage the usefulness of this information to make more informed business decisions. For most small and medium- sized enterprises (SMEs), however, such data typically sits in an archive without being utilized. While SMEs appreciate the need for utilizing historical data to make more informed business decisions, they often lack the technical knowhow and funding to embrace an effective BI solution. In this paper, drawing from our experience in implementing a BI solution for a UK SME we discuss some potential tools and strategies that could help SMEs overcome these challenges so as to reap the benefits of adopting an effective BI solution

    Gender Detection on Social Networks using Ensemble Deep Learning

    Full text link
    Analyzing the ever-increasing volume of posts on social media sites such as Facebook and Twitter requires improved information processing methods for profiling authorship. Document classification is central to this task, but the performance of traditional supervised classifiers has degraded as the volume of social media has increased. This paper addresses this problem in the context of gender detection through ensemble classification that employs multi-model deep learning architectures to generate specialized understanding from different feature spaces

    Enhancing Biomedical Text Summarization Using Semantic Relation Extraction

    Get PDF
    Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization

    Keywords and Co-Occurrence Patterns in the Voynich Manuscript: An Information-Theoretic Analysis

    Get PDF
    The Voynich manuscript has remained so far as a mystery for linguists and cryptologists. While the text written on medieval parchment -using an unknown script system- shows basic statistical patterns that bear resemblance to those from real languages, there are features that suggested to some researches that the manuscript was a forgery intended as a hoax. Here we analyse the long-range structure of the manuscript using methods from information theory. We show that the Voynich manuscript presents a complex organization in the distribution of words that is compatible with those found in real language sequences. We are also able to extract some of the most significant semantic word-networks in the text. These results together with some previously known statistical features of the Voynich manuscript, give support to the presence of a genuine message inside the book
    corecore