261 research outputs found
Evolving Ensemble Fuzzy Classifier
The concept of ensemble learning offers a promising avenue in learning from
data streams under complex environments because it addresses the bias and
variance dilemma better than its single model counterpart and features a
reconfigurable structure, which is well suited to the given context. While
various extensions of ensemble learning for mining non-stationary data streams
can be found in the literature, most of them are crafted under a static base
classifier and revisits preceding samples in the sliding window for a
retraining step. This feature causes computationally prohibitive complexity and
is not flexible enough to cope with rapidly changing environments. Their
complexities are often demanding because it involves a large collection of
offline classifiers due to the absence of structural complexities reduction
mechanisms and lack of an online feature selection mechanism. A novel evolving
ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in
this paper. pENsemble differs from existing architectures in the fact that it
is built upon an evolving classifier from data streams, termed Parsimonious
Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism,
which estimates a localized generalization error of a base classifier. A
dynamic online feature selection scenario is integrated into the pENsemble.
This method allows for dynamic selection and deselection of input features on
the fly. pENsemble adopts a dynamic ensemble structure to output a final
classification decision where it features a novel drift detection scenario to
grow the ensemble structure. The efficacy of the pENsemble has been numerically
demonstrated through rigorous numerical studies with dynamic and evolving data
streams where it delivers the most encouraging performance in attaining a
tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System
Detecting and reacting on drifts and shifts in on-line data streams with evolving fuzzy systems.
In this paper, we present new approaches to handle drift and shift in on-line data streams using evolving fuzzy systems (EFS), which are characterized by the fact that their structure is not fixed and not pre-determined. When dealing with drifts and shifts in data streams one needs to take into account two major issues: a) automatic detection of, and b) automatic reaction to this. To address the first problem we propose an approach based on the concepts of age and utility of fuzzy rules/clusters. The second problem itself is composed of two sub-problems concerning the influence of the drifts and shifts on: 1) the antecedent parts (fuzzy set and rule structure) and 2) the consequent parts (parameters) of the fuzzy models. To address the latter sub-problem we propose an approach that introduces a gradual forgetting strategy in the local learning process. To address the former sub-problem we introduce two alternative methods: one that is based on the evolving density-based clustering, eClustering (used in eTS); and one that is based on the automatic adaptation of the learning rate of the evolving vector quantization approach (eVQ) (used in FLEXFIS). The paper is concluded with an empirical evaluation of the impact of the proposed approaches in (on-line) real-world data sets where drifts and shifts occur
Online Tool Condition Monitoring Based on Parsimonious Ensemble+
Accurate diagnosis of tool wear in metal turning process remains an open
challenge for both scientists and industrial practitioners because of
inhomogeneities in workpiece material, nonstationary machining settings to suit
production requirements, and nonlinear relations between measured variables and
tool wear. Common methodologies for tool condition monitoring still rely on
batch approaches which cannot cope with a fast sampling rate of metal cutting
process. Furthermore they require a retraining process to be completed from
scratch when dealing with a new set of machining parameters. This paper
presents an online tool condition monitoring approach based on Parsimonious
Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly
flexible principle where both ensemble structure and base-classifier structure
can automatically grow and shrink on the fly based on the characteristics of
data streams. Moreover, the online feature selection scenario is integrated to
actively sample relevant input attributes. The paper presents advancement of a
newly developed ensemble learning algorithm, pENsemble+, where online active
learning scenario is incorporated to reduce operator labelling effort. The
ensemble merging scenario is proposed which allows reduction of ensemble
complexity while retaining its diversity. Experimental studies utilising
real-world manufacturing data streams and comparisons with well known
algorithms were carried out. Furthermore, the efficacy of pENsemble was
examined using benchmark concept drift data streams. It has been found that
pENsemble+ incurs low structural complexity and results in a significant
reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic
PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles
There exists an increasing demand for a flexible and computationally
efficient controller for micro aerial vehicles (MAVs) due to a high degree of
environmental perturbations. In this work, an evolving neuro-fuzzy controller,
namely Parsimonious Controller (PAC) is proposed. It features fewer network
parameters than conventional approaches due to the absence of rule premise
parameters. PAC is built upon a recently developed evolving neuro-fuzzy system
known as parsimonious learning machine (PALM) and adopts new rule growing and
pruning modules derived from the approximation of bias and variance. These rule
adaptation methods have no reliance on user-defined thresholds, thereby
increasing the PAC's autonomy for real-time deployment. PAC adapts the
consequent parameters with the sliding mode control (SMC) theory in the
single-pass fashion. The boundedness and convergence of the closed-loop control
system's tracking error and the controller's consequent parameters are
confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's
efficacy is evaluated by observing various trajectory tracking performance from
a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing
micro aerial vehicle called hexacopter. Furthermore, it is compared to three
distinctive controllers. Our PAC outperforms the linear PID controller and
feed-forward neural network (FFNN) based nonlinear adaptive controller.
Compared to its predecessor, G-controller, the tracking accuracy is comparable,
but the PAC incurs significantly fewer parameters to attain similar or better
performance than the G-controller.Comment: This paper has been accepted for publication in Information Science
Journal 201
On-line Redundancy Elimination in Evolving Fuzzy Regression Models using a Fuzzy Inclusion Measure
Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems
Antipollution legislation in automotive internal combustion engines requires active control and prediction of pollutant formation and emissions. Predictive emission models are of great use in the system calibration phase, and also can be integrated for the engine control and on-board diagnosis tasks. In this paper, fuzzy modelling of the NOx emissions of a diesel engine is investigated, which overcomes some drawbacks of pure engine mapping or analytical physical-oriented models. For building up the fuzzy NOx prediction models, the FLEXFIS approach (short for FLEXible Fuzzy Inference Systems) is applied, which automatically extracts an appropriate number of rules and fuzzy sets by an evolving version of vector quantization (eVQ) and estimates the consequent parameters of Takagi-Sugeno fuzzy systems with the local learning approach in order to optimize the least squares functional. The predictive power of the fuzzy NOx prediction models is compared with that one achieved by physical-oriented models based on high-dimensional engine data recorded during steady-state and dynamic engine states.This work was supported by the Upper Austrian Technology and Research Promotion. This publication reflects only the author's view. Furthermore, we acknowledge PSA for providing the engine and partially supporting our investigation. Special thanks are given to PO Calendini, P Gaillard and C. Bares at the Diesel Engine Control Department.Lughofer, E.; Macian Martinez, V.; Guardiola García, C.; Klement, EP. (2011). Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems. Applied Soft Computing. 11(2):2487-2500. doi:10.1016/j.asoc.2010.10.004S2487250011
- …
