40 research outputs found

    Experimental and numerical investigations of bone drilling for the indication of bone quality during orthopaedic surgery

    Get PDF
    Bone drilling is an essential part of many orthopaedic surgical procedures, including those for internal fixation and for attaching prosthetics. Drilling into bone is a fundamental skill that can be both very simple, such as drilling through long bones, or very difficult, such as drilling through the vertebral pedicles where incorrectly drilled holes can result in nerve damage, vascular damage or fractured pedicles. Also large forces experienced during bone drilling may promote crack formation and can result in drill overrun, causing considerable damage to surrounding tissues. Therefore, it is important to understand the effect of bone material quality on the bone drilling forces to select favourable drilling conditions, and improve orthopaedic procedures. [Continues.

    Experimental characterization of gasoline sprays under highly evaporating conditions

    Get PDF
    An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector’s nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays

    EVOLUTION OF ACCOUNTABILITY FRAMEWORKS IN PAKISTAN: 1947 TO 2022

    Get PDF
    This paper focuses on the evolution of laws and institutions related to public sector accountability in Pakistan since its independence. It critically outlines a chronological legal history of the regulatory and institutions anti-corruption frameworks since 1860. It overviews the development phases of the promulgation, amendments, and annulment of such laws and points to the intent of the legislature and lawmakers in defining the scope of and promulgating these laws. In this regard, it outlines several different laws and seven evolution categories of accountability institutions. The authors also touch upon the influence of political government changes on such laws, especially through to contemporary political situation of Pakistan. In the later sections, there is a discussion on the international (comparative) context of accountability mechanisms followed up by conclusion. This paper offers a comprehensive review of accountability history vis-à-vis its institutional mechanisms and bodies, and serves as a source document for policy makers, academic researchers, and students of accountability in the context of Pakistan

    Drilling resistance: A method to investigate bone quality

    Get PDF
    Purpose: Bone drilling is a major part of orthopaedic surgery performed during the internal fixation of fractured bones. At present, information related to drilling force, drilling torque, rate of drill-bit penetration and drill-bit rotational speed is not available to orthopaedic surgeons, clinicians and researchers as bone drilling is performed manually. Methods: This study demonstrates that bone drilling force data if recorded in-vivo, during the repair of bone fractures, can provide information about the quality of the bone. To understand the variability and anisotropic behaviour of cortical bone tissue, specimens cut from three anatomic positions of pig and bovine were investigated at the same drilling speed and feed rate. Results: The experimental results showed that the drilling force does not only vary from one animal bone to another, but also vary within the same bone due to its changing microstructure. Drilling force does not give a direct indication of bone quality; therefore it has been correlated with screw pull-out force to provide a realistic estimation of the bone quality. A significantly high value of correlation (r2 = 0.93 for pig bones and r2 = 0.88 for bovine bones) between maximum drilling force and normalised screw pull-out strength was found. Conclusions: The results show that drilling data can be used to indicate bone quality during orthopaedic surgery

    Finite element modeling and experimentation of bone drilling forces

    Get PDF
    Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling. The model incorporates the dynamic characteristics involved in the process along with the accurate geometrical considerations. The average critical thrust forces and torques obtained using FE analysis, for set of machining parameters are found to be in good agreement with the experimental results

    Finite element modeling and experimentation of bone drilling forces

    Get PDF
    Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling. The model incorporates the dynamic characteristics involved in the process along with the accurate geometrical considerations. The average critical thrust forces and torques obtained using FE analysis, for set of machining parameters are found to be in good agreement with the experimental results

    Drilling resistance: a method to investigate bone quality

    Get PDF
    Purpose: Bone drilling is a major part of orthopaedic surgery performed during the internal fixation of fractured bones. At present, information related to drilling force, drilling torque, rate of drill-bit penetration and drill-bit rotational speed is not available to orthopaedic surgeons, clinicians and researchers as bone drilling is performed manually. Methods: This study demonstrates that bone drilling force data if recorded in-vivo, during the repair of bone fractures, can provide information about the quality of the bone. To understand the variability and anisotropic behaviour of cortical bone tissue, specimens cut from three anatomic positions of pig and bovine were investigated at the same drilling speed and feed rate. Results: The experimental results showed that the drilling force does not only vary from one animal bone to another, but also vary within the same bone due to its changing microstructure. Drilling force does not give a direct indication of bone quality; therefore it has been correlated with screw pull-out force to provide a realistic estimation of the bone quality. A significantly high value of correlation (r2 = 0.93 for pig bones and r2 = 0.88 for bovine bones) between maximum drilling force and normalised screw pull-out strength was found. Conclusions: The results show that drilling data can be used to indicate bone quality during orthopaedic surgery

    ACCOUNTABILITY AT CROSSROADS: GOVERNANCE CHALLENGES AND CONSEQUENCES IN PAKISTAN

    Get PDF
    This paper points to how anti-corruption efforts in Pakistan at the national and provincial levels actually contribute to their failure. The broad and flexible definitions of corruption in prevailing laws have led to miscarriages of justice, as numerous interpretations result in potential unfair targeting of individuals. The complex landscape of accountability in Pakistan also evolves from multiple institutional overlaps—lacking clear jurisdictional boundaries. A case in point is the use of plea bargaining as a corruption prevention model that faced criticism for being coercive as well as an infringement on one’s right to fair trial. The National Accountability Bureau (NAB) has often been accused of violating fundamental rights protected in the Constitution of Pakistan, and the accountability procedures are seen as humiliating for civil servants. This paper discusses how the overall institutional-legal framework is shaped by its heavy dependence on the government that undermines the operational effectiveness of the Anti-Graft Bodies (A-GBs). It overviews anti-corruption efforts in Pakistan facing mainstream challenges: political-policy implications, legal-institutional inconsistencies, violations of rights, and operational inefficiency, which collectively hinder their effectiveness

    Drilling in cortical bone: a finite element model and experimental investigations

    Get PDF
    Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill-bit breakthrough, excessive heat generation, and mechanical damage to the bone. An experimental and computational study of drilling in cortical bone has been conducted. A 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling has been developed. The model incorporates the dynamic characteristics involved in the process along with geometrical considerations. An elastic-plastic material model is used to predict the behaviour of cortical bone during drilling. The average critical thrust forces and torques obtained using FE analysis are found to be in good agreement with the experimental results
    corecore