1,982 research outputs found

    Environmental challenges to operationalisation of South African rainfall enhancement

    Get PDF
    Most of the atmospheric moisture in systems moving across South Africa leaves the sub-continent as the weather systems move out over the ocean, only a tenth of it falls on the landmass as rain. An increase in the efficiency of the atmospheric moisture delivery system by means of rainfall enhancement is therefore an attractive concept. Rainfall enhancement functions by either providing additional Cloud Condensation Nuclei or Ice forming Nuclei that will beneficially influence the precipitation formation process, improving the efficiency of moisture to rainfall conversion. Systematic South African research into rainfall enhancement started in the 1970s. The South African Rainfall Enhancement Programme (SAREP), initiated in the late 1990\'s, is the most recent in a series of studies and was the first semi-operational rainfall enhancement project to occur in South Africa as a response to drought conditions. In a recent study (DWAF, 2004 in prep) to finalise SAREP and provide guidance on operationalising rainfall enhancement, it was recommended that environmental impact assessment must be undertaken before this technology is implemented further. Rainfall enhancement falls specifically within the jurisdiction of the National Water Act (NWA) and the National Environmental Management Act (NEMA). A licence to undertake rainfall enhancement activities is required from the Minister of Water Affairs and Forestry after an appropriate environmental impact assessment has been undertaken to inform his decision. This paper proposes an approach to fulfil the legal requirements for operationalising future rainfall enhancement. The interaction between the science of rainfall enhancement and the ability of scientific disciplines to determine relevant environmental impacts, to appropriately inform the decision-making process, is specifically highlighted. The data requirements identified by scientists during the study varies in duration and resource needs and does not differentiate between ongoing scientific research and the requisite information required for informed decision making. This paper contemplates an approach which provides for holistic and co-ordinated investigation of South African rainfall enhancement into the future. Water SA Vol. 30 (5) 2005: pp.88-9

    Identifying Planetary Biosignature Impostors: Spectral Features of CO and O4 Resulting from Abiotic O2/O3 Production

    Full text link
    O2 and O3 have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O2/O3: CO and O4. We produce the first explicit self-consistent simulations of these spectral discriminants as they may be seen by JWST. If JWST-NIRISS and/or NIRSpec observe CO (2.35, 4.6 um) in conjunction with CO2 (1.6, 2.0, 4.3 um) in the transmission spectrum of a terrestrial planet it could indicate robust CO2 photolysis and suggest that a future detection of O2 or O3 might not be biogenic. Strong O4 bands seen in transmission at 1.06 and 1.27 um could be diagnostic of a post-runaway O2-dominated atmosphere from massive H-escape. We find that for these false positive scenarios, CO at 2.35 um, CO2 at 2.0 and 4.3 um, and O4 at 1.27 um are all stronger features in transmission than O2/O3 and could be detected with SNRs ≳\gtrsim 3 for an Earth-size planet orbiting a nearby M dwarf star with as few as 10 transits, assuming photon-limited noise. O4 bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36, 0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 um) by a next generation direct-imaging telescope such as LUVOIR/HDST or HabEx and would indicate an oxygen atmosphere too massive to be biologically produced.Comment: 7 pages, 4 figures, accepted to the Astrophysical Journal Letter

    VPLanet: The Virtual Planet Simulator

    Full text link
    We describe a software package called VPLanet that simulates fundamental aspects of planetary system evolution over Gyr timescales, with a focus on investigating habitable worlds. In this initial release, eleven physics modules are included that model internal, atmospheric, rotational, orbital, stellar, and galactic processes. Many of these modules can be coupled simultaneously to simulate the evolution of terrestrial planets, gaseous planets, and stars. The code is validated by reproducing a selection of observations and past results. VPLanet is written in C and designed so that the user can choose the physics modules to apply to an individual object at runtime without recompiling, i.e., a single executable can simulate the diverse phenomena that are relevant to a wide range of planetary and stellar systems. This feature is enabled by matrices and vectors of function pointers that are dynamically allocated and populated based on user input. The speed and modularity of VPLanet enables large parameter sweeps and the versatility to add/remove physical phenomena to assess their importance. VPLanet is publicly available from a repository that contains extensive documentation, numerous examples, Python scripts for plotting and data management, and infrastructure for community input and future development.Comment: 75 pages, 34 figures, 10 tables, accepted to the Proceedings of the Astronomical Society of the Pacific. Source code, documentation, and examples available at https://github.com/VirtualPlanetaryLaboratory/vplane

    eleanor: An open-source tool for extracting light curves from the TESS Full-Frame Images

    Get PDF
    During its two year prime mission the Transiting Exoplanet Survey Satellite (TESS) will perform a time-series photometric survey covering over 80% of the sky. This survey comprises observations of 26 24 x 96 degree sectors that are each monitored continuously for approximately 27 days. The main goal of TESS is to find transiting planets around 200,000 pre-selected stars for which fixed aperture photometry is recorded every two minutes. However, TESS is also recording and delivering Full-Frame Images (FFIs) of each detector at a 30 minute cadence. We have created an open-source tool, eleanor, to produce light curves for objects in the TESS FFIs. Here, we describe the methods used in eleanor to produce light curves that are optimized for planet searches. The tool performs background subtraction, aperture and PSF photometry, decorrelation of instrument systematics, and cotrending using principal component analysis. We recover known transiting exoplanets in the FFIs to validate the pipeline and perform a limited search for new planet candidates in Sector 1. Our tests indicate that eleanor produces light curves with significantly less scatter than other tools that have been used in the literature. Cadence-stacked images, and raw and detrended eleanor light curves for each analyzed star will be hosted on MAST, with planet candidates on ExoFOP-TESS as Community TESS Objects of Interest (CTOIs). This work confirms the promise that the TESS FFIs will enable the detection of thousands of new exoplanets and a broad range of time domain astrophysics.Comment: 21 pages, 13 figures, 2 tables, Accepted to PAS

    Sequence Effects on DNA Entropic Elasticity

    Get PDF
    DNA stretching experiments are usually interpreted using the worm-like chain model; the persistence length A appearing in the model is then interpreted as the elastic stiffness of the double helix. In fact the persistence length obtained by this method is a combination of bend stiffness and intrinsic bend effects reflecting sequence information, just as at zero stretching force. This observation resolves the discrepancy between the value of A measured in these experiments and the larger ``dynamic persistence length'' measured by other means. On the other hand, the twist persistence length deduced from torsionally-constrained stretching experiments suffers no such correction. Our calculation is very simple and analytic; it applies to DNA and other polymers with weak intrinsic disorder.Comment: LaTeX; postscript available at http://dept.physics.upenn.edu/~nelson/index.shtm

    Polymer reptation and nucleosome repositioning

    Full text link
    We consider how beads can diffuse along a chain that wraps them, without becoming displaced from the chain; our proposed mechanism is analogous to the reptation of "stored length" in more familiar situations of polymer dynamics. The problem arises in the case of globular aggregates of proteins (histones) that are wound by DNA in the chromosomes of plants and animals; these beads (nucleosomes) are multiply wrapped and yet are able to reposition themselves over long distances, while remaining bound by the DNA chain.Comment: 9 pages, including 2 figures, to be published in Phys. Rev. Let

    Refraction in exoplanet atmospheres: Photometric signatures, implications for transmission spectroscopy, and search in Kepler data

    Full text link
    Refraction deflects photons that pass through atmospheres, which affects transit light curves. Refraction thus provides an avenue to probe physical properties of exoplanet atmospheres and to constrain the presence of clouds and hazes. In addition, an effective surface can be imposed by refraction, thereby limiting the pressure levels probed by transmission spectroscopy. The main objective of the paper is to model the effects of refraction on photometric light curves for realistic planets and to explore the dependencies on atmospheric physical parameters. We also explore under which circumstances transmission spectra are significantly affected by refraction. Finally, we search for refraction signatures in photometric residuals in Kepler data. We use the model of Hui & Seager (2002) to compute deflection angles and refraction transit light curves, allowing us to explore the parameter space of atmospheric properties. The observational search is performed by stacking large samples of transit light curves from Kepler. We find that out-of-transit refraction shoulders are the most easily observable features, which can reach peak amplitudes of ~10 parts per million (ppm) for planets around Sun-like stars. More typical amplitudes are a few ppm or less for Jovians and at the sub-ppm level for super-Earths. Interestingly, the signal-to-noise ratio of any refraction residuals for planets orbiting Sun-like hosts are expected to be similar for planets orbiting red dwarfs. We also find that the maximum depth probed by transmission spectroscopy is not limited by refraction for weakly lensing planets, but that the incidence of refraction can vary significantly for strongly lensing planets. We find no signs of refraction features in the stacked Kepler light curves, which is in agreement with our model predictions.Comment: Accepted for publication in A&

    Methyl (Z)-2-chloro-3-(2-methoxy­carbonyl­phen­yl)prop-2-enoate

    Get PDF
    In the title compound, C12H11ClO4, the propenoate C=C bond is in the Z configuration. The propenoate C=O and C=C groups are essentially coplanar [C=C—C=O torsion angle = 172.4 (3)°] with the O atom synperiplanar to the Cl atom. However, the π systems of the aromatic ring and chloro­propenoate substituent are not coplanar; the corresponding dihedral angle is 51.5 (1)°. The noncoplanarity is likely due to steric inter­actions between the propenoate H atom and the ortho-methoxy­carbonyl group on the aromatic ring. Even in the observed noncoplanar conformation, the ortho C=O to H distance (2.40 Å) is less than the sum of the van der Waals radii of O and H (2.65 Å)
    • …
    corecore