69 research outputs found
Fock space exploration by angle resolved transmission through quantum diffraction grating of cold atoms in an optical lattice
Light transmission or diffraction from different quantum phases of cold atoms
in an optical lattice has recently come up as a useful tool to probe such ultra
cold atomic systems. The periodic nature of the optical lattice potential
closely resembles the structure of a diffraction grating in real space, but
loaded with a strongly correlated quantum many body state which interacts with
the incident electromagnetic wave, a feature that controls the nature of the
light transmission or dispersion through such quantum medium. In this paper we
show that as one varies the relative angle between the cavity mode and the
optical lattice, the peak of the transmission spectrum through such cavity also
changes reflecting the statistical distribution of the atoms in the illuminated
sites. Consequently the angle resolved transmission spectrum of such quantum
diffraction grating can provide a plethora of information about the Fock space
structure of the many body quantum state of ultra cold atoms in such an optical
cavity that can be explored in current state of the art experiments.Comment: 40 double spaced, single column pages, 40 .eps figures, accepted for
publication in Physical Review
Management of oxygen saturation monitoring in preterm newborns in the NICU: the Italian picture
Background: Although many studies emphasize the importance of using oxygen saturation (SpO2) targets in the NICUs, there is a wide variability in used saturation ranges among centers. Primary aim was to draw a representative picture on how the management of oxygen monitoring is performed in the Italian NICUs. Second aim was to identify healthcare-professionals related factors associated with oxygen targeting in the preterm population. Methods: Cross-sectional study with data collection via an electronic survey form. A questionnaire containing pre-piloted and open questions on monitoring and management of the SpO2 was administered to neonatologists across the network of the Italian Society of Neonatology. The questions focused on: the infrastructure, specific training, healthcare professionals and patients-related factors. The results of the survey were anonymously collected, summarized and analyzed. Results: Out of 378 questionnaires, 93 were correctly filled. Thirty-six different SpO2 ranges were observed. Centers using written standard operating procedures on oxygen management and SpO2 monitoring maintained a correct average range of SpO2 90–95%, avoided hyperoxia and reconsidered saturation targets in relation to comorbidities. 39.8% of responders disabled alarms during neonatal care. One center used biomarkers for complete monitoring of neonatal oxygenation status. Conclusions: There is considerable variation in SpO2 targets for preterm infants in the Italian NICUs. Standard operating procedures and specific training for health care personnel are the main factors playing a role for the correct maintenance of the recommended oxygen targets in preterms
Atomic scale strain relaxation in axial semiconductor III-V nanowire heterostructures
Combination of mismatched materials in semiconductor nanowire heterostructures offers a freedom of bandstructure engineering that is impossible in standard planar epitaxy. Nevertheless, the presence of strain and structural defects directly control the optoelectronic properties of these nanomaterials. Understanding with atomic accuracy how mismatched heterostructures release or accommodate strain, therefore, is highly desirable. By using atomic resolution high angle annular dark field scanning transmission electron microscopy combined with geometrical phase analyses and computer simulations, we are able to establish the relaxation mechanisms (including both elastic and plastic deformations) to release the mismatch strain in axial nanowire heterostructures. Formation of misfit dislocations, diffusion of atomic species, polarity transfer, and induced structural transformations are studied with atomic resolution at the intermediate ternary interfaces. Two nanowire heterostructure systems with promising applications (InAs/InSb and GaAs/GaSb) have been selected as key examples
Mutations in DSTYK and dominant urinary tract malformations.
ABSTRACT
Introduction
Congenital abnormalities of the kidney of the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and their etiology is poorly understood.
Methods
We performed genome-wide linkage analysis and whole-exome sequencing in a family with autosomal dominant congenital abnormalities of the kidney of the urinary tract (7 affected family members). We also performed sequence analysis in 311 unrelated patients, as well as histologic and functional studies.
Results
Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single rare deleterious variant within these linkage intervals, a heterozygous splice-site mutation in dual serine/threonine and tyrosine protein kinase (DSTYK). This variant, which resulted in aberrant gene product splicing, was present in all affected family members. Additional independent DSTYK mutations, including nonsense and splice-site mutations, were detected among 7/311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in multi-organ developmental defects, resembling loss of fibroblast growth factor (FGF) signaling. Consistent with this finding, DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. Finally, DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated ERK-phosphorylation, the principal signal downstream of receptor tyrosine kinases.
Conclusions
We detected DSTYK mutations in 2.2% of patients with congenital abnormalities of the kidney and urinary tract whom we studied, suggesting that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling
Wolfram Syndrome: New Mutations, Different Phenotype
BACKGROUND: Wolfram Syndrome (WS) is an autosomal recessive neurodegenerative disorder characterized by Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness identified by the acronym "DIDMOAD". The WS gene, WFS1, encodes a transmembrane protein called Wolframin, which recent evidence suggests may serve as a novel endoplasmic reticulum calcium channel in pancreatic β-cells and neurons. WS is a rare disease, with an estimated prevalence of 1/550.000 children, with a carrier frequency of 1/354. The aim of our study was to determine the genotype of WS patients in order to establish a genotype/phenotype correlation. METHODOLOGY/PRINCIPAL FINDINGS: We clinically evaluated 9 young patients from 9 unrelated families (6 males, 3 females). Basic criteria for WS clinical diagnosis were coexistence of insulin-treated diabetes mellitus and optic atrophy occurring before 15 years of age. Genetic analysis for WFS1 was performed by direct sequencing. Molecular sequencing revealed 5 heterozygous compound and 3 homozygous mutations. All of them were located in exon 8, except one in exon 4. In one proband only an heterozygous mutation (A684V) was found. Two new variants c.2663 C>A and c.1381 A>C were detected. CONCLUSIONS/SIGNIFICANCE: Our study increases the spectrum of WFS1 mutations with two novel variants. The male patient carrying the compound mutation [c.1060_1062delTTC]+[c.2663 C>A] showed the most severe phenotype: diabetes mellitus, optic atrophy (visual acuity 5/10), deafness with deep auditory bilaterally 8000 Hz, diabetes insipidus associated to reduced volume of posterior pituitary and pons. He died in bed at the age of 13 years. The other patient carrying the compound mutation [c.409_424dup16]+[c.1381 A>C] showed a less severe phenotype (DM, OA)
The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis
Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10-12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10-14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10-103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk
Clinical Characteristics and Treatment Patterns of Children and Adults With IgA Nephropathy or IgA Vasculitis: Findings From the CureGN Study
Introduction:
The Cure Glomerulonephropathy Network (CureGN) is a 66-center longitudinal observational study of patients with biopsy-confirmed minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, or IgA nephropathy (IgAN), including IgA vasculitis (IgAV). This study describes the clinical characteristics and treatment patterns in the IgA cohort, including comparisons between IgAN versus IgAV and adult versus pediatric patients.
Methods:
Patients with a diagnostic kidney biopsy within 5 years of screening were eligible to join CureGN. This is a descriptive analysis of clinical and treatment data collected at the time of enrollment.
Results:
A total of 667 patients (506 IgAN, 161 IgAV) constitute the IgAN/IgAV cohort (382 adults, 285 children). At biopsy, those with IgAV were younger (13.0 years vs. 29.6 years, P < 0.001), more frequently white (89.7% vs. 78.9%, P = 0.003), had a higher estimated glomerular filtration rate (103.5 vs. 70.6 ml/min per 1.73 m2, P < 0.001), and lower serum albumin (3.4 vs. 3.8 g/dl, P < 0.001) than those with IgAN. Adult and pediatric individuals with IgAV were more likely than those with IgAN to have been treated with immunosuppressive therapy at or prior to enrollment (79.5% vs. 54.0%, P < 0.001).
Conclusion:
This report highlights clinical differences between IgAV and IgAN and between children and adults with these diagnoses. We identified differences in treatment with immunosuppressive therapies by disease type. This description of baseline characteristics will serve as a foundation for future CureGN studies
From InSb Nanowires to Nanocubes: Looking for the Sweet Spot
High aspect ratios are highly desired to fully exploit the one-dimensional properties of indium antimonide nanowires. Here we systematically investigate the growth mechanisms and find parameters leading to long and thin nanowires. Variation of the V/III ratio and the nanowire density are found to have the same influence on the “local” growth conditions and can control the InSb shape from thin nanowires to nanocubes. We propose that the V/III ratio controls the droplet composition and the radial growth rate and these parameters determine the nanowire shape. A sweet spot is found for nanowire interdistances around 500 nm leading to aspect ratios up to 35. High electron mobilities up to 3.5 × 10^4 cm^2 V^(–1) s^(–1) enable the realization of complex spintronic and topological devices
- …