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Abstract

In this paper, we report the effect of Au thickness on the self-assembled Au droplets on GaAs (111)A and (100). The
evolution of Au droplets on GaAs (111)A and (100) with the increased Au thickness progress in the Volmer-Weber
growth mode results in distinctive 3-D islands. Under an identical growth condition, depending on the thickness of
Au deposition, the self-assembled Au droplets show different size and density distributions, while the average
height is increased by approximately 420% and the diameter is increased by approximately 830%, indicating a
preferential lateral expansion. Au droplets show an opposite evolution trend: the increased size along with the
decreased density as a function of the Au thickness. Also, the density shifts on the orders of over two magnitude
between 4.23 x 10" and 1.16 x 10° cm™ over the thickness range tested. At relatively thinner thicknesses below

4 nm, the self-assembled Au droplets sensitively respond to the thickness variation, evidenced by the sharper slopes
of dimensions and density plots. The results are systematically analyzed and discussed in terms of atomic force
microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), cross-sectional
surface line profiles, and Fourier filter transform (FFT) power spectra.
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Background

Self-assembled metallic droplets have been attracting con-
siderable attention due to their outstanding physical and
optoelectronic properties such as an improved optical
absorption at their localized surface plasmon resonance
(LSPR) frequency, the shift of wavelengths and the local
heating, etc. through the interactions with quantum and
nanostructures and thus have found various applications
with diverse semiconductors. For example, self-assembled
droplets can act as a nanoscale surface drilling medium
for the fabrication of ‘nanoholes’ using the droplet etching
technique [1-4]. Quantum dots have then been demon-
strated around the nanoholes [5]. Also, metallic droplets
have been successfully utilized in the fabrications of vari-
ous quantum- and nanostructures such as quantum rings
[6-9], quantum dots [10-12], and nanowires (NWs) [13]
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through ‘droplet epitaxy” following the successful fabrica-
tion of homo-epitaxial GaAs nanocrystals on a GaAs sub-
strate [14]. In addition, Au droplets have been adapted as
catalysts for the fabrication of diverse NWs via various
epitaxial approaches and have attracted extensive interest
due to their unique properties such as surface plasmonic
resonance, biosensing, quantum size effect, and biology
[15-18]. Moreover, given the wide range of substrates and
vapor phase materials utilized, Au droplets can be suc-
cessfully utilized in the fabrication of various NWs and
many elements utilized can diffuse into catalyst gold drop-
lets based on the vapor-liquid-solid (VLS) mechanism
during the fabrication of NWs [19-27]. For example, Si,
Ge, GaN, GaAs, and InAs-InSb NWs have been success-
fully synthesized by molecular beam epitaxy, chemical
beam epitaxy, pulsed laser deposition, and chemical vapor
deposition [28-30]. In the VLS-based growth, from the
supersaturated catalyst alloy droplets, the nucleation
and growth of NWs can occur at the L-S interface due
to a much higher sticking probability. Therefore, the de-
sign of NWs including diameter, length, configuration,
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and density is originally determined by that of the Au
droplet catalysts. Consequently, the study of the behavior
of Au droplets on various surfaces becomes an essential
step to accomplish desired NW synthesis; however, to
date, the systematic study of the control of Au drop-
lets on GaAs is still deficient. Therefore, in this study,
we investigate the effect of systematic thickness vari-
ation on self-assembled Au droplets on GaAs (111)A
and (100).

Methods

In this study, the fabrication of Au droplets was carried
out on GaAs (111)A and semi-insulting (100) substrates
in a pulsed laser deposition (PLD) system. The sub-
strates used were epi-ready with an off-axis of +0.1°
from the American Xtal Technology (AXT, Inc,
Fremont, CA, USA). Samples were initially indium bonded
on an Inconel holder and degassed at 350°C for 30 min
under 1 x 10™* Torr in order to remove the contami-
nants. With the aim of investigating the effect of the Au
thickness on the self-assembled Au droplets, various
thicknesses of gold films were deposited at a growth rate
of 0.5 A/s with the ionization current of 3 mA as a func-
tion of time. The growth rate was calibrated by the XRD
measurement. Gold films 2, 2.5, 3, 4, 6, 9, 12, and 20 nm
thick were systematically deposited on GaAs (111)A and
(100) at the same time in an ion-coater chamber under
1x 107! Torr. Subsequently, substrate temperature (Zy,)
was ramped up to the target temperature of 550°C for an
annealing process at a ramp rate of 1.83°C/s. The ramp-
ing was operated by a computer-controlled recipe in a
PLD system, and the pressure was maintained below
1x10™* Torr during the annealing process. To ensure
the uniformity of Au droplets after annealing for 150 s,
the Ty, was immediately quenched down to minimize
the Ostwald ripening [30-32]. Subsequent to the fabrica-
tion of the self-assembled Au droplets, an atomic force
microscope (AFM) was utilized for the characterization
of surface morphology under the non-contact (tapping)
mode with the AFM tips (NSC16/AIBS, pmasch). The
Al-coated tips were between 20 and 25 pm in length
with a radius of the curvature of less than 10 nm. The
tip had a spring constant of approximately 40 N/m and
a resonant frequency of approximately 170 kHz. The
convolution of tips more sensitively affects the lateral
measurement when measuring objects with high aspect
ratios as well as high density in general. Thus, to minimize
the tip effect and maintain consistency of the analysis, the
same type of tips from a single batch were utilized for the
characterization of Au droplets. The XEI software (Park
Systems, Suwon, South Korea, and Santa Clara, CA, USA)
was utilized for the analysis of the acquired data including
AFM images, cross-sectional surface line profiles, and
Fourier filter transform (FFT) power spectra. The acquired
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AFM images were processed by flattening along the x and
y directions to improve the image quality. FFT power
spectrum is generated by converting the height informa-
tion from the spatial domain to the frequency domain
using Fourier filter transform. Different colors represent
different frequency intensities of height; thus, height dis-
tribution with directionality of nanostructures can be de-
termined by the color distribution. For larger area surface
characterization, a scanning electron microscope (SEM)
under vacuum was utilized. The elemental analysis was
performed using an energy-dispersive X-ray spectroscopy
(EDS) system in vacuum with the spectral mode (Thermo
Fisher Noran System 7, Pittsburgh, PA, USA).

Results and discussion

Figure 1 illustrates a simplified fabrication process of the
self-assembled Au droplets on GaAs (111)A. For a system-
atic investigation, the Au film thickness (thickness) was
carefully varied while fixing the other growth parameters.
As clearly shown in the cross-sectional line profile in
Figure 1(b-1), the surface was atomically smooth even
after the Au deposition. The surface morphologies by a
systematic annealing process are shown with 2 nm thick-
ness in Figure 1c and 9 nm thicknesses in Figure 1d.
Under an identical growth condition, the self-assembled
Au droplets showed significant distinction in the size and
density distribution depending on the thickness. Figure 2
shows the detailed evolution process of the self-assembled
Au droplets on GaAs (111)A with the thickness variation
between 2 and 20 nm. AFM top views of 3 x 3 um” are
shown in Figure 2a,b,c,d,e,fgh, and those of 1 x 1 um? are
shown in Figure 2(a-1) to (h-1). The insets in Figure 2(a-2)
to (h-2) show the AFM side views of 1 x 1 um?”. Figure 3a,
b,c,d,e,f;gh shows the cross-sectional surface line profiles
acquired from the 1 x 1-um® AFM images in Figure 2(a-1)
to (h-1) indicated with white lines. FFT power spectra
are shown in Figure 3(a-1) to (h-1). Figure 4 summarizes
the average height (AH), average density (AD), and lat-
eral diameter (LD) of the self-assembled Au droplets on
GaAs (111)A compared to the various thicknesses. The
root mean squared (RMS) roughness (R,) values of sam-
ples are summarized in Figure 4d. In general, the average
size including height and diameter of the self-assembled
Au droplets on GaAs (111)A was gradually increased
with the increased thicknesses as clearly shown in the
AFM images in Figure 2 and the surface line profiles in
Figure 3 as well as the summary plots in Figure 4a,c.
Meanwhile, the density of Au droplets was gradually de-
creased as clearly seen in Figures 2 and 4b. For example,
with 2 nm Au deposition, the very densely packed
dome-shaped Au droplets were formed on GaAs (111)A
as presented in Figure 2a and (a-1) with the AD of 4.23 x
10" cm™. The corresponding AH was 23 nm and the LD
was 52.5 nm as shown in Figure 4a,c. At 2.5 nm thickness,
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Figure 1 lllustration of the fabrication process of self-assembled Au droplets according to the variation of Au thickness. (a) Atomic
force microscopy (AFM) image of bare GaAs (111)A. (b) After Au deposition. (c) Self-assembled Au droplets with 2 nm Au deposition annealed at
550°C. (d) Au droplets with 9 nm Au deposition. AFM images in (a-d) are 1 1 umzA AFM side views of (a-1) to (c-1) are 250 x 250 nm? and that
of (d-1) is 300 x 300 nm?. (a-2) to (d-2) present cross-sectional surface line profiles indicated as white lines in (a-d).
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the size of droplets grew larger and the density was re-
duced as clearly shown in Figure 2b and (b-1): the AH
was increased by x 1.4 to 32.3 nm and the LD increased
by x 1.8 to 94.4 nm as shown in Figure 4a,c. On the other
hand, as shown in Figure 4b, the AD decreased by x 3.41
to 1.24x 10'® cm™. With relatively lower coverage of 2
and 2.5 nm thicknesses, the Au droplets were quite round
and uniformly distributed over the surface, as shown in
the AFM images of Figure 2a,b. With 3 nm thickness, the
Au droplets were also quite uniformly distributed over the
surface and began to show a slight elongation as shown in
the AFM images in Figure 2c. Similarly, with the further
increase of thicknesses between 4 and 20 nm, the continu-
ous decrease in density with the associated increase in size
was clearly observed as shown in Figures 2,3,4. Overall,
the size of Au droplets was increased by x 4.2 in AH and x
8.2 in LD between 2 and 20 nm Au deposition, and as a
compensation, the AD was decreased by over two orders
of magnitude as shown in Figure 4. Clearly, during the
evolution of Au droplets, the lateral expansion was pre-
ferred and the size increase was compensated by the dens-
ity decrease. The degree of increase in size and thus of the
decrease in density was much pronounced at relatively
thinner thickness such as below 6 nm as evidenced by the
sharper slopes of the plots in Figure 4a,b,c. The expansion
of droplet dimensions is also clearly observed in the RMS
roughness (Ry) plot in Figure 4d. With 2 nm thickness,
the R; was 4 nm and it was very sharply increased to
11.6 nm with only a slight increase of thickness to 2.5 nm.
Then, the Ry was 12.7 nm with 3 nm thickness and

15.7 nm with 4 nm thickness. The R, was then saturated
at 9 nm with the maximum value of 22.8 and began to de-
crease, possibly due to the dominance of the density de-
crease. In terms of the shape of the Au droplets on GaAs
(111)A, at relatively thinner thicknesses between 2 and
3 nm, the droplets showed a round geometry as clearly
seen in Figure 2a,b,c, which were reflected in the FFT
spectra in Figure 3(a-1) to (c-1) with the bright round pat-
terns. Between 4 and 20 nm thicknesses, the Au droplets
showed irregular shapes; however, the FFT spectra in
Figure 3(d-1) to (h-1) remained round and symmetric as
there was no specific directionality of elongation along
any direction. The FFT spectra became dimmer due to the
density reduction with the increased thicknesses. Figure 5
shows the EDS graphs with the thicknesses of 4 and
12 nm on GaAs (111)A. The insets of Figure 5(a-1) and
(b-1) show the SEM images of the corresponding samples,
and those of Figure 5(a-2) and (b-2) show the enlarged
graphs between 9 and 11 KeV. In Figure 5a,b, identical Ga
and As peaks are observed: the Lal peaks of Ga and As
at 1.096 and 1.282 KeV and the Kal peaks of Ga and As
at 9.243 and 10.532 KeV. Specifically, significantly pro-
nounced Au peaks were observed with the 12-nm-
thickness sample. For example, the Au Mal peak count
at 2.123 KeV was nearly three times higher than that
with the 4 nm thickness. Similarly the Au Lal peak at
9.711 KeV also showed nearly three times higher peak
count as clearly seen in the insets of Figure 5(a-2) and
(b-2), possibly due to the increased interaction volume
of Au with the X-ray. Overall, with the increased
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side views of 1x 1 pmz [(@-2) to (h-2)].

Figure 2 Self-assembled Au droplets fabricated by the variation of the Au thicknesses between 2 and 20 nm on GaAs (111)A.
Au Droplets were fabricated by annealing at 550°C for 150 s. AFM top views of 3x 3 umz (a-h). AFM top views of 1x 1 umz [(@-1) to (h-1)]. ARM

thickness, the size of self-assembled Au droplets on
GaAs (111)A continued to increase and the density con-
tinued to decrease, compensating the size expansion
with the decreased density. Especially, at lower thick-
nesses (below 4 nm), the Au droplets were more sensi-
tive to thickness, as revealed by the sharper slope shown
in the plots in Figure 4.

In this experiment, with the increased thicknesses, the
Au droplets persistently developed into 3-D islands with
the dimensional increase including the height and diam-
eter along with the decrease in density. This can be ex-
plained based on the Volmer-Weber mode [31]. After
the nucleation, due to the weaker binding energy between
surface and Au adatoms (£;) than the binding energy be-
tween Au adatoms (E,), Au atoms have a tendency to
form 3-D islands rather than a layer (E, > Ej). The size
expansion of Au droplets with increased thicknesses can
also be seen with a variety of metal droplets on various

surfaces [32-38]. As is well known, the diffusion length
(Lp) can be expressed as Lp = /Dst, where Dy is the dif-
fusion coefficient and ¢ is the residence time of the atoms.
The Ds is a direct function of the surface temperature. In
this case, as the annealing temperature (7,) was fixed for
all samples, an identical Ly can be expected. Meanwhile,
in a thermodynamic system, a larger surface area is pre-
ferred with the nanostructures in order to reduce the sur-
face energy. Thus, with the presence of additional Au
atoms within the fixed Lp, droplets tend to absorb near
the Au adatoms to increase the surface area, until reach-
ing equilibrium provided with the condition of Ej > E.
Therefore, with the increased thicknesses with a favorable
diffusion, Au droplets can keep expanding in size with the
accompanying decrease in density when thickness was in-
creased. Au droplets on polystyrene, polymethyl meth-
acrylate [39], Si [40], and TiO, [41] were reported to grow
initially in the Volmer-Weber mode; however, Au droplets
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Figure 3 Cross-sectional line profiles obtained from the white lines in Figure 2(a-1) to (h-1) are shown in (a-h). 2-D Fourier filter transform

(FFT) power spectra of corresponding samples [(a-1) to (h-1)].
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Figure 5 Energy-dispersive X-ray spectroscopy (EDS) graphs. EDS graphs showing the spectra of the samples with 4 nm (a) and 12 nm
(b) Au thickness on GaAs (111)A. Insets in (a-1) and (b-1) show the corresponding scanning electron microscopy (SEM) images of a 20(x) x 13.88()/)—pm2 area.
(@-2) and (b-2) show enlarged graphs between 9 and 11 KeV.

began to coalesce and even form a layer when the critical
thickness was reached. The critical radius (<Rc>) [41,42]
4 DSyO4/3 .
can be expressed as < Rc>"~=%=—Dc, where y is the
surface free energy, Q is the Au atomic volume, and D¢ is
the critical amount. As can be seen, the < R¢ > is a direct
function of Q and D, and thus, while other parameters
are fixed, we can expect a direct increase of < R¢ > with
the thickness increase. For example, Au droplets on Si
(111) [37] evolved based on the coalescence mode growth
with the increased thickness and began to show an early
stage of coalescence mode at a thickness as low as 5 nm
and showed a significant coalescence at approximately
10 nm. With the thickness of 20 nm on Si (111), the Au
droplets almost formed into a layer. However, perhaps
due to the strong dominance of the Volmer-Weber mode
in this experiment on GaAs (111)A, the coalescence
mode did not occur and the self-assembled Au droplets
persistently developed into 3-D islands with the in-
creased thicknesses.

Figure 6 shows the evolution of the self-assembled Au
droplets on GaAs (100) along with the thickness variation
between 2 and 20 nm, and Figure 7 summarizes the AH,
AD, LD, and R, as well as the corresponding surface line
profiles and FFT power spectra, of the resulting Au drop-
lets on GaAs (100). With 2 nm Au thickness, as shown in

Figure 6a and (a-1), small dome-shaped Au droplets were
formed with a packed high density. The corresponding
AH and LD were 21.8 nm and 51.9 nm, respectively, as
shown in Figure 7. The results were smaller droplets as
compared to the droplets on GaAs (111)A by 5.63% in
height and by 1.14% in diameter. Meanwhile, the AD was
4.64 x 10*° cm™2, 9.7% higher than those on GaAs (111)A.
As the droplets were slightly smaller, the slightly higher
AD can be accepted based on the diffusion and thermody-
namics. The evolution of self-assembled Au droplets on
GaAs (100) showed quite similar behaviors to that on
GaAs (111)A in terms of the height, diameter, density, and
R, evolution as shown in Figure 7. That is, the size of the
self-assembled Au droplets including the AH and LD
gradually increased while the AD was progressively de-
creased when the thickness increased, as can be clearly
seen in the AFM images shown in Figure 6 and the line
profiles in Figure 7efgh,ijkl. For example, at 2.5 nm
thickness, the AH increased to 30.1 nm and gradually in-
creased to 72,7 nm at 9 nm thickness, finally reaching
96.3 nm at 20 nm thickness as shown in Figure 7a. Simi-
larly, the LD was increased to 93.8 nm at 2.5 nm thickness
and finally reached 4314 nm at 20 nm thickness. Mean-
while, the AD constantly decreased from 4.64 x 10" cm™
at the 2-nm thickness to 1.20 x 10® cm™ at the 20-nm
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Figure 6 Evolution of the self-assembled Au droplets. Fabrication of Au droplets on GaAs (100) with the Au thickness, fabricated by
annealing at 550°C for 150 s. The results are presented with AFM top views of 3 x 3 umz in (@-h) and of 1 x 1 umz in (a-1) to (h-1). Insets in (a-2)

thickness, as clearly seen in Figure 7b. The Rq was 3.9 nm
with the 2-nm thickness and kept increasing up to 9 nm
thicknesses with the value of 24.4 nmy; it then began to de-
crease due to the dominance of density reduction in the
evolution process. Overall, the size and density evolution
of the self-assembled Au droplets showed a somewhat
similar trend, and the size and density were also quite
similar to those on GaAs (111)A. The FFT patterns shown
in Figure 7(e-1) to (I-1) also show quite similar behaviors:
round bright patterns with higher densities with thinner
thicknesses, such as in Figure 7(e-1) to (h-1), and smaller
patterns with reduced density with increased thicknesses,
as shown in Figure 7(i-1) to (I-1). Figure 8 shows the EDS
graphs with 2 and 20 nm thicknesses on GaAs (100), and
the insets of Figure 8c,d,e,f show the SEM images of the
samples with 4, 6, 9, and 12 nm thicknesses. Figure 8g
summarizes the evolution of Au Mal peak at 2.123 KeV
along with the increased thicknesses. The Au Mal peak at

2.123 KeV and Au Lal peak at 9.711 KeV were not ob-
served in the large graph in Figure 8a, while the two Au
peaks were clearly observed with the 20-nm thickness in
Figure 8b. This could be due to the minimal interaction
volume of the 2-nm-thickness sample. The SEM insets
clearly show the size increase along with the decreased
AD as a function of increased thickness, and Figure 8g
clearly demonstrates the evolution of the Au Mal peak at
2.123 KeV as a function of increased thickness. In this
work, the self-assembled Au droplets on GaAs (100) again
showed quite similar evolution trends compared to those
on GaAs (111)A. Based on the previous work [43], when
the annealing temperature was varied between 250°C and
550°C on GaAs (100) and (111)A, respectively, the Au
droplets showed a clear distinction in terms of their size
and density. Indeed, at a lower temperature range between
250°C and 350°C, droplets began to nucleate and develop
into wiggly Au nanostructures. Finally, between 400°C and
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Figure 7 Au droplet dimensions and RMS roughness. Plots of Au droplet dimensions and RMS roughness on GaAs (100): AH (a), AD (b), LD
(c), and RMS roughness (d). Self-assembled Au droplets were fabricated by annealing at 550°C for 150 s along with the variation of Au thicknesses
(error bars +5% in all plots.). Cross-sectional line profiles of Au droplets are shown in (e-l), acquired from the white lines in Figure 6 (a-1) to (h-1).
Corresponding 2-D FFT power spectra of each sample are shown in (e-1) to (I-1).

550°C, dome-shaped Au droplets were fabricated, and
during the evolution, GaAs (111)A persistently showed
larger-size Au droplets than GaAs (100). Meanwhile,
GaAs (111)A constantly showed a lower density compared
to the GaAs (100). Increased dimension of Au droplets
was obvious with the increased annealing temperature
based on the thermodynamics and diffusion perspective,
as the Dy is a direct function of the surface temperature as
previously discussed. With different surface indexes under
an identical growth environment, the L can be affected
by the root mean squared surface roughness (R); this is

caused by several factors such as the atomic step density,
surface reconstruction, and dangling bond density [44-46].
The measured Ry values were 0.289 nm for GaAs (111)A
and 0.322 nm for GaAs (100). Although GaAs (100) pos-
sesses a higher value of R, the size and density between
GaAs (111)A and (100) were quite similar within the error
range. Perhaps, it could be because the ideal surface en-
ergy values of GaAs (100) and (111) are quite in a similar
range: 65 meV/A? for GaAs (100) and 62 meV/A* for
GaAs (111), respectively [47]. And also, it could be be-
cause the Lp of Au adatoms has a much more noticeable
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Figure 8 EDS graphs of the samples with 2 nm (a) and 20 nm (b) thickness. SEM images (c-f) reveal the size increase with decreased
density of Au droplets at a larger scale. (g) Evolution of Au Mal peaks at 2.123 KeV along with the increased thickness between 2 and 20 nm.

effect with the temperature variation based on the diffu-
sion and the annealing temperature variation effect on
various GaAs surfaces [43]. Namely, in this experiment,
the size and density of Au droplets can be governed by
thermal surface diffusion and the surface index can have
a minor effect when the Lp was fixed with a fixed an-
nealing temperature. Another possibility is that the dif-
ference is buried under the large degree of change in
size and density induced by the thickness variation. For
example, the AH of the Au droplets only varied by 23.4
to 32.4 nm when the annealing temperature was varied
between 400°C and 550°C while the AH varied by 23.1
to 96.5 nm here when the thickness was varied between
2 and 20 nm.

Conclusions

In conclusion, the evolution of self-assembled Au drop-
lets on GaAs (111)A and (100) with a systematic vari-
ation of the Au thickness (thickness) between 2 and
20 nm has been investigated and the results were analyzed
using AFM, surface line profiles, FFT spectra, SEM, and
EDS data. The self-assembled Au droplets were fabricated
based on the Volmer-Weber growth mode on GaAs (111)
A and (100), resulting in distinctive 3-D islands, and the
average dimension including height and diameter of
the self-assembled Au droplets was gradually increased.
While, the average density was progressively decreased
along with the increased thicknesses on both GaAs
(111)A and (100). The binding energy between the Au
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atoms is greater than that between the Au and surface
atoms (Ex > Ey); Therefore, the growth (even with the
increased thickness) resulted in the formation of 3-D
islands rather than a layer. At relatively lower thick-
nesses below 6 nm, Au droplets responded more sensi-
tively in terms of the size and density evolution, shown
by the sharper slopes of the size and density plots,
which was also demonstrated by the sharply increased
Ry. The evolution of self-assembled Au droplets depend-
ing on the surface index showed quite similar behavior in
terms of the size and density evolution. This can be due to
the minor index effect when the diffusion length is fixed
by the fixed annealing temperature; it could also be due to
the excessive degree of change in the size and density of
Au droplets. This result can be promising in various
related nanostructure fabrications: quantum size effect,
nanowires, biosensing, catalysis, study on the improve-
ment of the localized surface plasmonic resonance, etc. on
GaAs (111)A and (100) surfaces.
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