356 research outputs found

    Dual Task Cost of Motor and Cognitive Performance in Individuals with Parkinson’s Disease

    Get PDF
    Parkinson’s Disease (PD) is characterized by both motor, non-motor symptoms, as well as cognitive changes. Given the background of this disease, and the impact external stimulation has on exacerbating symptoms, it is hypothesized that (1) verbal fluency dual task walking conditions will be associated with slower gait speed, and (2) verbal fluency tasks performed in sitting will yield faster and more accurate response rates than walking verbal fluency tasks. To evaluate motor performance, participants were asked to ambulate at their self-selected speed for 3 ST and 3 DT trials across a 10m walkway. The Wilcoxon Signed Rank test was used to identify differences between the ST & DT conditions for both motor and cognitive performance. The results indicate that in individuals with PD, the accuracy and quantity of responses decrease, which may jeopardize their ability to effectively perform multiple tasks. The heterogeneous nature of the subjects might indicate providing individualized interventions.https://orb.binghamton.edu/research_days_posters_2023/1062/thumbnail.jp

    The Role of TLR2 and Bacterial Lipoprotein in Enhancing Airway Inflammation and Immunity

    Get PDF
    Non-typeable Haemophilus influenzae (NTHI) colonizes the lower respiratory tract of patients with chronic obstructive pulmonary disease and also causes exacerbations of the disease. The 16-kDa lipoprotein P6 has been widely studied as a potential vaccine antigen due to its highly conserved expression amongst NTHI strains. Although P6 is known to induce potent inflammatory responses, its role in the pathogenesis of NTHI infection in vivo has not been examined. Additionally, the presence of an amino-terminal lipid motif on P6 serves to activate host Toll-like receptor 2 (TLR2) signaling. The role of host TLR2 and NTHI expression of the lipoprotein P6 on the induction of airway inflammation and generation of adaptive immune responses following chronic NTHI stimulation was evaluated with TLR2-deficient mice and a P6-deficient NTHI strain. Absence of either host TLR2 or bacterial P6 resulted in diminished levels of immune cell infiltration within lungs of mice exposed to NTHI. Pro-inflammatory cytokine secretion was also reduced in lungs that did not express TLR2 or were exposed to NTHI devoid of P6. Induction of specific antibodies to P6 was severely limited in TLR2-deficient mice. Although mice exposed to the P6-deficient NTHI strain were capable of generating antibodies to other surface antigens of NTHI, these levels were lower compared to those observed in mice exposed to P6-expressing NTHI. Therefore, cognate interaction between host TLR2 and bacterial P6 serves to enhance lung inflammation and elicit robust adaptive immune responses during NTHI exposure. Strategies to limit NTHI inflammation while simultaneously promoting robust immune responses may benefit from targeting the TLR2:P6 signaling axis

    Influence of a walking aid on temporal and spatial parameters of gait in healthy adults

    Get PDF
    This is the post-print version of the final paper published in PM&R. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2014 Elsevier B.V.Objective - To determine the effect of using a walking aid on temporal and spatial parameters of gait when used for balance versus support on the dominant and nondominant hand side. Design - Repeated measures observational study design. Setting - University gymnasium. Participants - Twenty-seven healthy male and female adults of mean ± standard deviation age 44.74 ± 10.00 years. Methods - Five walking conditions (C) were completed by all participants on the GAITRite pressure mat. Normal walking (C1), walking with a cane in the dominant hand (C2) and nondominant hand (C3) as if using for balance, walking with a cane in the dominant hand (C4) and nondominant hand (C5) while allowing approximately 10% of the body weight through the cane. Main Outcome Measurements - Temporal measurements (swing time, stance time, single limb support time, double limb support time) as percentage of a gait cycle and the base of support for the left and the right foot for all 5 walking conditions. Results - A significant difference (P < .001) was observed between C1, C2, and C3 in percentage swing time and percentage stance time of the ipsilateral side, and in percentage single limb support time of the contralateral side. The double limb support time was significantly different (P ≤ .04) for both ipsilateral and contralateral sides. Comparisons among C1, C4, and C5 demonstrated significance (P < .001) for all variables. Post hoc analysis showed significance between C1 and C4, and C1 and C5 for all variables except percentage stance time of the ipsilateral side and percentage single limb support of the contralateral side. Conclusions - In healthy adults, use of a cane for balance modifies swing and stance parameters of the ipsilateral side and does not affect the base of support formed by the feet. When used for support, the cane alters the swing and stance parameters, and also the base of support formed by the feet

    Feasibility study of inertia sensor technology on the pelvic and trunk kinematics during horseback riding in children

    Get PDF
    Inertial sensors technology (IMU) has been utilized to determine kinematic data for some outdoor activities. Horseback riding (HR) is an alternative treatment that has been reported to be beneficial for children with cerebral palsy (CP). However, understanding the mechanism of improving postural control is unknown. The aim of this study was to investigate the feasible of IMU to determine pelvic and trunk kinematics during HR in children with CP and with typical development (TD). Twenty children (10 CP, 10 TD; age: 4-12 years) were recruited. The movement of the pelvis and trunk in children with CP and TD including angular displacement and velocity were measured by inertial measurement sensors during horseback riding. The result found that no differences were found for pelvis and trunk angular displacement or velocity. For children with CP, pelvis and trunk correlations were strong in angular displacement in the sagittal plane (r=0.65, p=0.04 for pelvis and trunk flexion-extension and r=0.75, p=0.01 for pelvis flexion-extension and trunk inclination) and in angular velocity in the frontal and horizontal plane (r=0.82, p=0.02 for lateral flexion and r=0.73, p=0.02 for rotation). For children with TD, pelvis and trunk correlations were strong only for angular velocity in the sagittal plane (r=67, p=0.03). In conclusion, it is possible to use the IMU technology to capture movement of children during HR. The motion parameters including pelvis and trunk angular displacement and velocity that can be used to detect a degree of functional impairments and monitor the progress of treatment

    Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.

    Get PDF
    Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables’ accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25 m versus 0.31 m) with decreased velocity (1.1 m s−1 versus 1.3 m s−1) and decreased step length (0.32 m versus 0.38 m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC =0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management.There is no financial or personal relationship to disclose, nor any other conflicts of interest, that may bias or influence this stud

    Estimating physical activity in children aged 8-11 years using accelerometry: contributions from fundamental movement skills and different accelerometer placements.

    Get PDF
    Accelerometers are widely used to assess physical activity, but it is unclear how effective accelerometers are in capturing fundamental movement skills in children. This study examined the energy expenditure during different physical activities (PA) and calibrated triaxial accelerometry, worn at the wrist, waist and ankle, during children’s PA with attention to object control movement skills and cycling. Thirty children (14 girls) aged 8 to 11 years wore a GENEActiv accelerometer on their non-dominant wrist, dominant wrist, waist and ankle. Children undertook eight, 5-min bouts of activity comprising being lay supine, playing with Lego, slow walking, medium walking, medium paced running, overarm throwing and catching, instep passing a football and cycling at 35 W. VO2 was assessed concurrently using indirect calorimetry. Indirect calorimetry indicated that being lay supine and playing with Lego were classified as sedentary in nature (3 METs). ROC curve analysis indicated that discrimination of sedentary activity was excellent for all placements although the ankle performed better than other locations. This pattern was replicated for moderate physical activity (MPA) where the ankle performed better than other locations. Data were reanalyzed removing cycling from the data set. When this analysis was undertaken discrimination of sedentary activity remained excellent for all locations. For MPA discrimination of activity was considered good for waist and ankle placement and fair for placement on either wrist. The current study is the first to quantify energy expenditure in object control fundamental movement skills via indirect calorimetry in children aged 8–11 years whilst also calibrating GENEActiv accelerometers worn at four body locations. Results suggest throwing and catching is categorized as light intensity and instep kicking a football moderate intensity, resulting in energy expenditure equivalent to slow or medium paced walking or cycling and running, respectively. Ankle worn accelerometry appears to provide the most suitable wear location to quantify MPA including ambulatory activity, object control skills and cycling, in children aged 8–11 years.N/

    Recombinant Sialyltransferase Infusion Mitigates Infection-Driven Acute Lung Inflammation

    Get PDF
    Inappropriate inflammation exacerbates a vast array of chronic and acute conditions with severe health risks. In certain situations, such as acute sepsis, traditional therapies may be inadequate in preventing severe organ damage or death. We have previously shown cell surface glycan modification by the circulating sialyltransferase ST6Gal-1 regulates de novo inflammatory cell production via a novel extrinsic glycosylation pathway. Here, we show that therapeutic administration of recombinant, bioactive ST6Gal-1 (rST6G) mitigates acute inflammation in a murine model mimicking acute exacerbations experienced by patients with chronic obstructive pulmonary disease (COPD). In addition to suppressing proximal neutrophil recruitment at onset of infection-mediated inflammation, rST6G also muted local cytokine production. Histologically, exposure with NTHI, a bacterium associated with COPD exacerbations, in rST6G-treated animals revealed consistent and pronounced reduction of pulmonary inflammation, characterized by smaller inflammatory cuffs around bronchovascular bundles, and fewer inflammatory cells within alveolar walls, alveolar spaces, and on pleural surfaces. Taken together, the data advance the idea that manipulating circulatory ST6Gal-1 levels has potential in managing inflammatory conditions by leveraging the combined approaches of controlling new inflammatory cell production and dampening the inflammation mediator cascade

    A novel method of using accelerometry for upper limb FES control.

    Get PDF
    This paper reports on a novel approach to using a 3-axis accelerometer to capture body segment angle for upper limb functional electrical stimulation (FES) control. The approach calculates the angle between the accelerometer x -axis and the gravity vector, while avoiding poor sensitivity at certain angles and minimizing errors when true acceleration is relatively large in comparison to gravity. This approach was incorporated into a state-machine controller which is used for the real-time control of FES during up- per limb functional task performance. An experimental approach was used to validate the new method. Two participants with different upper limb impairments resulting from a stroke carried out four different FES-assisted tasks. Comparisons were made between angle calculated from arm-mounted accelerometer data using our algorithm and angle calculated from limb-mounted reflective marker data. After removal of coordinate misalignment error, mean error across tasks and subjects ranged between 1.4 and 2.9 °. The approach shows promise for use in the control of upper limb FES and other human movement applications where true acceleration is relatively small in comparison with gravity
    corecore