235 research outputs found

    Splenic artery steal syndrome in patients with orthotopic liver transplant: Where to embolize the splenic artery?

    Get PDF
    Purpose: This study compared proximal and distal embolization of the splenic artery (SA) in patients with splenic artery steal syndrome (SAS) after orthotopic liver transplantation (OLT) regarding post interventional changes of liver function to identify an ideal location of embolization. Methods and materials: 85 patients with SAS after OLT treated with embolization of the SA between 2007 and 2017 were retrospectively reviewed. Periinterventional DSA was used to assess treatment success and to stratify patients according to the site of embolization. Liver function was assessed using following laboratory values: bilirubin, albumin, gamma-glutamyl transferase, glutamat-pyruvat-transaminase (GPT), glutamic-oxaloacetic transaminase (GOT), Alkaline Phosphatase (ALP), aPTT, prothrombin time and thrombocyte count. Descriptive statistics were used to summarize the data. Median laboratory values of pre, 1- and 3-days, as well as 1-week and 1-month post-embolization were compared between the respective embolization sites using linear mixed model regression analysis. Results: All procedures were technically successful and showed an improved blood flow in the hepatic artery post-embolization. Ten Patients were excluded due to re -intervention or inconsistent image documentation. Pairwise comparison using linear mixed model regression analysis showed a significant difference between proximal and distal embolization for GPT (57.0 (IQR 107.5) vs. 118.0 (IQR 254.0) U/l, p = 0.002) and GOT (48.0 (IQR 48.0) vs. 81.0 (IQR 115.0) U/l, p = 0.008) 3-days after embolization as well as median thrombocyte counts 7-days after embolization (122 (IQR 108) vs. 83 (IQR 74) in thousands, p = 0.014). For all other laboratory values, no statistically significant difference could be shown with respect to the embolization site. Conclusion: We conclude that long-term outcomes after embolization of the SA in the scenario of SAS after OLT are irrespective of the site of embolization of the SA, whereas a proximal embolization potentially facilitates earlier normalization of liver function. Choice of technique should therefore be informed by anatomical conditions, safety considerations and preferences of the interventionalist

    A Statistically Rigorous Test for the Identification of Parent−Fragment Pairs in LC-MS Datasets

    Get PDF
    Untargeted global metabolic profiling by liquid chromato-graphy−mass spectrometry generates numerous signals that are due to unknown compounds and whose identification forms an important challenge. The analysis of metabolite fragmentation patterns, following collision-induced dissociation, provides a valuable tool for identification, but can be severely impeded by close chromatographic coelution of distinct metabolites. We propose a new algorithm for identifying related parent−fragment pairs and for distinguishing these from signals due to unrelated compounds. Unlike existing methods, our approach addresses the problem by means of a hypothesis test that is based on the distribution of the recorded ion counts, and thereby provides a statistically rigorous measure of the uncertainty involved in the classification problem. Because of technological constraints, the test is of primary use at low and intermediate ion counts, above which detector saturation causes substantial bias to the recorded ion count. The validity of the test is demonstrated through its application to pairs of coeluting isotopologues and to known parent−fragment pairs, which results in test statistics consistent with the null distribution. The performance of the test is compared with a commonly used Pearson correlation approach and found to be considerably better (e.g., false positive rate of 6.25%, compared with a value of 50% for the correlation for perfectly coeluting ions). Because the algorithm may be used for the analysis of high-mass compounds in addition to metabolic data, we expect it to facilitate the analysis of fragmentation patterns for a wide range of analytical problems

    The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Standardization of analytical approaches and reporting methods via community-wide collaboration can work synergistically with web-tool development to result in rapid community-driven expansion of online data repositories suitable for data mining and meta-analysis. In metabolomics, the inter-laboratory reproducibility of gas-chromatography/mass-spectrometry (GC/MS) makes it an obvious target for such development. While a number of web-tools offer access to datasets and/or tools for raw data processing and statistical analysis, none of these systems are currently set up to act as a public repository by easily accepting, processing and presenting publicly submitted GC/MS metabolomics datasets for public re-analysis.</p> <p>Description</p> <p>Here, we present MetabolomeExpress, a new File Transfer Protocol (FTP) server and web-tool for the online storage, processing, visualisation and statistical re-analysis of publicly submitted GC/MS metabolomics datasets. Users may search a quality-controlled database of metabolite response statistics from publicly submitted datasets by a number of parameters (eg. metabolite, species, organ/biofluid etc.). Users may also perform meta-analysis comparisons of multiple independent experiments or re-analyse public primary datasets via user-friendly tools for t-test, principal components analysis, hierarchical cluster analysis and correlation analysis. They may interact with chromatograms, mass spectra and peak detection results via an integrated raw data viewer. Researchers who register for a free account may upload (via FTP) their own data to the server for online processing via a novel raw data processing pipeline.</p> <p>Conclusions</p> <p>MetabolomeExpress <url>https://www.metabolome-express.org</url> provides a new opportunity for the general metabolomics community to transparently present online the raw and processed GC/MS data underlying their metabolomics publications. Transparent sharing of these data will allow researchers to assess data quality and draw their own insights from published metabolomics datasets.</p

    Decision tree supported substructure prediction of metabolites from GC-MS profiles

    Get PDF
    Gas chromatography coupled to mass spectrometry (GC-MS) is one of the most widespread routine technologies applied to the large scale screening and discovery of novel metabolic biomarkers. However, currently the majority of mass spectral tags (MSTs) remains unidentified due to the lack of authenticated pure reference substances required for compound identification by GC-MS. Here, we accessed the information on reference compounds stored in the Golm Metabolome Database (GMD) to apply supervised machine learning approaches to the classification and identification of unidentified MSTs without relying on library searches. Non-annotated MSTs with mass spectral and retention index (RI) information together with data of already identified metabolites and reference substances have been archived in the GMD. Structural feature extraction was applied to sub-divide the metabolite space contained in the GMD and to define the prediction target classes. Decision tree (DT)-based prediction of the most frequent substructures based on mass spectral features and RI information is demonstrated to result in highly sensitive and specific detections of sub-structures contained in the compounds. The underlying set of DTs can be inspected by the user and are made available for batch processing via SOAP (Simple Object Access Protocol)-based web services. The GMD mass spectral library with the integrated DTs is freely accessible for non-commercial use at http://gmd.mpimp-golm.mpg.de/. All matching and structure search functionalities are available as SOAP-based web services. A XML + HTTP interface, which follows Representational State Transfer (REST) principles, facilitates read-only access to data base entities

    Overweight, physical activity, tobacco and alcohol consumption in a cross-sectional random sample of German adults

    Get PDF
    BACKGROUND: There is a current paucity of data on the health behaviour of non-selected populations in Central Europe. Data on health behaviour were collected as part of the EMIL study which investigated the prevalence of infection with Echinococcus multilocularis and other medical conditions in an urban German population. METHODS: Participating in the present study were 2,187 adults (1,138 females [52.0%]; 1,049 males [48.0%], age: 18–65 years) taken from a sample of 4,000 persons randomly chosen from an urban population. Data on health behaviour like physical activity, tobacco and alcohol consumption were obtained by means of a questionnaire, documentation of anthropometric data, abdominal ultrasound and blood specimens for assessment of chemical parameters. RESULTS: The overall rate of participation was 62.8%. Of these, 50.3% of the adults were overweight or obese. The proportion of active tobacco smokers stood at 30.1%. Of those surveyed 38.9% did not participate in any physical activity. Less than 2 hours of leisure time physical activity per week was associated with female sex, higher BMI (Body Mass Index), smoking and no alcohol consumption. Participants consumed on average 12 grams of alcohol per day. Total cholesterol was in 62.0% (>5.2 mmol/l) and triglycerides were elevated in 20.5% (≥ 2.3 mmol/l) of subjects studied. Hepatic steatosis was identified in 27.4% of subjects and showed an association with male sex, higher BMI, higher age, higher total blood cholesterol, lower HDL, higher triglycerides and higher ALT. CONCLUSION: This random sample of German urban adults was characterised by a high prevalence of overweight and obesity. This and the pattern of alcohol consumption, smoking and physical activity can be considered to put this group at high risk for associated morbidity and underscore the urgent need for preventive measures aimed at reducing the significantly increased health risk

    Metabolomics Unravel Contrasting Effects of Biodiversity on the Performance of Individual Plant Species

    Get PDF
    In spite of evidence for positive diversity-productivity relationships increasing plant diversity has highly variable effects on the performance of individual plant species, but the mechanisms behind these differential responses are far from being understood. To gain deeper insights into the physiological responses of individual plant species to increasing plant diversity we performed systematic untargeted metabolite profiling on a number of herbs derived from a grassland biodiversity experiment (Jena Experiment). The Jena Experiment comprises plots of varying species number (1, 2, 4, 8, 16 and 60) and number and composition of functional groups (1 to 4; grasses, legumes, tall herbs, small herbs). In this study the metabolomes of two tall-growing herbs (legume: Medicago x varia; non-legume: Knautia arvensis) and three small-growing herbs (legume: Lotus corniculatus; non-legumes: Bellis perennis, Leontodon autumnalis) in plant communities of increasing diversity were analyzed. For metabolite profiling we combined gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS) and UPLC coupled to FT-ICR-MS (LC-FT-MS) analyses from the same sample. This resulted in several thousands of detected m/z-features. ANOVA and multivariate statistical analysis revealed 139 significantly changed metabolites (30 by GC-TOF-MS and 109 by LC-FT-MS). The small-statured plants L. autumnalis, B. perennis and L. corniculatus showed metabolic response signatures to increasing plant diversity and species richness in contrast to tall-statured plants. Key-metabolites indicated C- and N-limitation for the non-leguminous small-statured species B. perennis and L. autumnalis, while the metabolic signature of the small-statured legume L. corniculatus indicated facilitation by other legumes. Thus, metabolomic analysis provided evidence for negative effects of resource competition on the investigated small-statured herbs that might mechanistically explain their decreasing performance with increasing plant diversity. In contrast, taller species often becoming dominant in mixed plant communities did not show modified metabolite profiles in response to altered resource availability with increasing plant diversity. Taken together, our study demonstrates that metabolite profiling is a strong diagnostic tool to assess individual metabolic phenotypes in response to plant diversity and ecophysiological adjustment

    Inter-laboratory reproducibility of fast gas chromatography–electron impact–time of flight mass spectrometry (GC–EI–TOF/MS) based plant metabolomics

    Get PDF
    The application of gas chromatography–mass spectrometry (GC–MS) to the ‘global’ analysis of metabolites in complex samples (i.e. metabolomics) has now become routine. The generation of these data-rich profiles demands new strategies in data mining and standardisation of experimental and reporting aspects across laboratories. As part of the META-PHOR project’s (METAbolomics for Plants Health and OutReach: http://www.meta-phor.eu/) priorities towards robust technology development, a GC–MS ring experiment based upon three complex matrices (melon, broccoli and rice) was launched. All sample preparation, data processing, multivariate analyses and comparisons of major metabolite features followed standardised protocols, identical models of GC (Agilent 6890N) and TOF/MS (Leco Pegasus III) were also employed. In addition comprehensive GC×GC–TOF/MS was compared with 1 dimensional GC–TOF/MS. Comparisons of the paired data from the various laboratories were made with a single data processing and analysis method providing an unbiased assessment of analytical method variants and inter-laboratory reproducibility. A range of processing and statistical methods were also assessed with a single exemplary dataset revealing near equal performance between them. Further investigations of long-term reproducibility are required, though the future generation of global and valid metabolomics databases offers much promise
    corecore