26 research outputs found

    Emission estimates of HCFCs and HFCs in California from the 2010 CalNex study

    Get PDF
    The CalNex 2010 (California Research at the Nexus of Air Quality and Climate Change) study was designed to evaluate the chemical composition of air masses over key source regions in California. During May to June 2010, air samples were collected on board a National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft over the South Coast Air Basin of California (SoCAB) and the Central Valley (CV). This paper analyzes six effective greenhouse gases - chlorodifluoromethane (HCFC-22), 1,1-dichloro-1-fluoroethane (HCFC-141b), 1-chloro-1,1-difluoroethane (HCFC-142b), 2-chloro-1,1,1,2-tetrafluoroethane (HCFC-124), 1,1,1,2- tetrafluoroethane (HFC-134a), and 1,1-difluoroethane (HFC-152a) - providing the most comprehensive characterization of chlorofluorocarbon (CFC) replacement compound emissions in California. Concentrations of measured HCFCs and HFCs are enhanced greatly throughout the SoCAB and CV, with highest levels observed in the SoCAB: 310 ± 92 pptv for HCFC-22, 30.7 ± 18.6 pptv for HCFC-141b, 22.9 ± 2.0 pptv for HCFC-142b, 4.86 ± 2.56 pptv for HCFC-124, 109 ± 46.4 pptv for HFC-134a, and 91.2 ± 63.9 pptv for HFC-152a. Annual emission rates are estimated for all six compounds in the SoCAB using the measured halocarbon to carbon monoxide (CO) mixing ratios and CO emissions inventories. Emission rates of 3.05 ± 0.70 Gg for HCFC-22, 0.27 ± 0.07 Gg for HCFC-141b, 0.06 ± 0.01 Gg for HCFC-142b, 0.11 ± 0.03 Gg for HCFC-124, 1.89 ± 0.43 Gg for HFC-134a, and 1.94 ± 0.45 Gg for HFC-152b for the year 2010 are calculated for the SoCAB. These emissions are extrapolated from the SoCAB region to the state of California using population data. Results from this study provide a baseline emission rate that will help future studies determine if HCFC and HFC mitigation strategies are successful. Key PointsHCFC and HFC emissions are calculated for the year 2010 for the SoCABEmissions are extrapolated to the state of CaliforniaEmissions are calculated using CalNex field measurements © 2013. American Geophysical Union. All Rights Reserved

    Organic aerosol formation downwind from the Deepwater Horizon oil spill.

    Get PDF
    A large fraction of atmospheric aerosols are derived from organic compounds with various volatilities. A National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft made airborne measurements of the gaseous and aerosol composition of air over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico that occurred from April to August 2010. A narrow plume of hydrocarbons was observed downwind of DWH that is attributed to the evaporation of fresh oil on the sea surface. A much wider plume with high concentrations of organic aerosol (>25 micrograms per cubic meter) was attributed to the formation of secondary organic aerosol (SOA) from unmeasured, less volatile hydrocarbons that were emitted from a wider area around DWH. These observations provide direct and compelling evidence for the importance of formation of SOA from less volatile hydrocarbons

    Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada

    Get PDF
    The NOAA WP-3 aircraft intercepted aged forest fire plumes from Alaska and western Canada during several flights of the NEAQS-ITCT 2k4 mission in 2004. Measurements of acetonitrile (CH3CN) indicated that the air masses had been influenced by biomass burning. The locations of the plume intercepts were well described using emissions estimates and calculations with the transport model FLEXPART. The best description of the data was generally obtained when FLEXPART injected the forest fire emissions to high altitudes in the model. The observed plumes were generally drier than the surrounding air masses at the same altitude, suggesting that the fire plumes had been processed by clouds and that moisture had been removed by precipitation. Different degrees of photochemical processing of the plumes were determined from the measurements of aromatic VOCs. The removal of aromatic VOCs was slow considering the transport times estimated from the FLEXPART model. This suggests that the average OH levels were low during the transport, which may be explained by the low humidity and high concentrations of carbon monoxide and other pollutants. In contrast with previous work, no strong secondary production of acetone, methanol and acetic acid is inferred from the measurements. A clear case of removal of submicron particle volume and acetic acid due to precipitation scavenging was observed. Copyright 2006 by the American Geophysical Union

    Biomass burning and anthropogenic sources of CO over New England in the summer 2004

    Get PDF
    During the summer of 2004 large wildfires were burning in Alaska and Canada, and part of the emissions were transported toward the northeast United States, where they were measured during the NEAQS-ITCT 2k4 (New England Air Quality Study-Intercontinental Transport and Chemical Transformation) study on board the NOAA WP-3 aircraft and the NOAA research vessel Ronald H. Brown. Using acetonitrile and chloroform as tracers the biomass burning and the anthropogenic fraction of the carbon monoxide (CO) enhancement are determined. As much as 30% of the measured enhancement is attributed to the forest fires in Alaska and Canada transported into the region, and 70% is attributed to the urban emissions of mainly New York and Boston. On some days the forest fire emissions were mixed down to the surface and dominated the CO enhancement. The results compare well with the FLEXPART transport model, indicating that the total emissions during the measurement campaign for biomass burning might be about 22 Tg. The total U.S. anthropogenic CO sources used in FLEXPART are 25 Tg. FLEXPART model, using the U.S. EPA NEI-99 data, overpredicts the CO mixing ratio around Boston and New York in 2004 by about 50%. Copyright 2006 by the American Geophysical Union

    Vertical profiles of acetylene in the troposphere and stratosphere

    Get PDF
    Stratospheric measurements of acetylene up to altitudes of 30 km are presented. The air samples were collected during three different balloon flights, two of them at 44°N, one at 32°N using balloon borne, liquid neon-cooled, cryosamplers. Their acetylene concentration was measured in the laboratory by flame ionisation gaschromatography. The different profiles at 32°N and 44°N are discussed with respect to possible vertical exchange processes and compared with published model calculations
    corecore