19 research outputs found

    Selected isotope ratio measurements of light metallic elements (Li, Mg, Ca, and Cu) by multiple collector ICP-MS

    Get PDF
    The unique capabilities of multiple collector inductively coupled mass spectrometry (MC-ICP-MS) for high precision isotope ratio measurements in light elements as Li, Mg, Ca, and Cu are reviewed in this paper. These elements have been intensively studied at the Geological Survey of Israel (GSI) and other laboratories over the past few years, and the methods used to obtain high precision isotope analyses are discussed in detail. The scientific study of isotopic fractionation of these elements is significant for achieving a better understanding of geochemical and biochemical processes in nature and the environment

    Ca isotope constraints on chemical weathering processes: evidence from headwater in the Changjiang River, China

    Get PDF
    This study aims to clarify the relationship between chemical weathering of rocks and the carbon budget of rivers and better understand the weathering mechanisms of plateau watersheds. We chose to study the Jinsha River, which originates from the Tibetan Plateau and also is in the upper reaches of the Changjiang River. Analysis of hydrochemistry, radiogenic strontium isotope and stable calcium isotopes were conducted of the Jinsha River water samples, which were collected along its mainstream and main tributaries in the summer. The results show that the water chemistry of the mainstream waters is dominated by evaporite weathering, which have low 87Sr/86Sr values (0.7098–0.7108) and wide range of Sr contents (2.70–9.35 μmol/L). In contrast, tributaries of the Jinsha River have higher 87Sr/86Sr (0.7090–0.7157) and lower Sr contents (∼1 μmol/L). Moreover, the Ca isotopic compositions in the mainstream (0.87–1.11‰) are heavier than the tributaries (0.68–0.88‰) and could not be fully explained by the conventional mixing of different sources. We suggest that secondary carbonate precipitation fractionates Ca isotopes in the Jinsha River, and fractionation factors are between 0.99935 and 0.99963. At least 66% of Ca was removed in the mainstream of the Jinsha River through secondary mineral precipitation, and the average value is ∼35% in the tributaries. The results highlight that evaporite weathering results in more carbonate precipitation influencing Ca transportation and cycling in the riverine system constrained by stable Ca isotopic compositions and water chemistry

    Germanium contents, Ge/Si ratios, and Sr isotopic composition in deep-sea cherts

    No full text
    Nineteen chert samples from a continuous core of the DSDP (Leg 17, Hole 167) were analysed for Ge; in addition we analysed five samples from other cores. The ages range between Late Jurassic, and Late Eocene. The concentration of Ge changes with age from 0.87 ppm in the oldest samples to 0.23 ppm in the youngest (equivalent to a Ge/Si decrease from 0.00000072 to 0.00000019). The decrease in Ge/Si is well correlated with the 87Sr/86Sr ratio in sea water of the relevant age. The interpretation of this trend may reflect: (a) different levels of Ge/Si in sea water as a result of a different ratio between hydrothermal and riverine input, (b) a diagenetic trend in siliceous sediments, (c) recording (by radiolaria) a transition between a radiolaria dominated ocean (with relatively high Ge/Si ratios in sea water) and diatom domination or (d) a combination of the above

    (Table 2) Germanium contents, Ge/Si ratios, and Sr isotopic composition in cherts from DSDP Site 20-195

    No full text
    Nineteen chert samples from a continuous core of the DSDP (Leg 17, Hole 167) were analysed for Ge; in addition we analysed five samples from other cores. The ages range between Late Jurassic, and Late Eocene. The concentration of Ge changes with age from 0.87 ppm in the oldest samples to 0.23 ppm in the youngest (equivalent to a Ge/Si decrease from 0.00000072 to 0.00000019). The decrease in Ge/Si is well correlated with the 87Sr/86Sr ratio in sea water of the relevant age. The interpretation of this trend may reflect: (a) different levels of Ge/Si in sea water as a result of a different ratio between hydrothermal and riverine input, (b) a diagenetic trend in siliceous sediments, (c) recording (by radiolaria) a transition between a radiolaria dominated ocean (with relatively high Ge/Si ratios in sea water) and diatom domination or (d) a combination of the above

    The Mg isotope signature of marine Mg-evaporites

    No full text
    Marine Mg-evaporites are a small oceanic sink of magnesium, precipitating only from extremely evaporated brines. The isotopic composition of Mg in seawater, δ26Mgseawater, has recently been shown to be an effective tool for reconstructing the Mg budget of the modern and past oceans. However, estimations of the Mg isotope fractionation between the Mg-evaporites and their precipitating solution are required for full quantification of the isotope effect of the evaporitic sink on δ26Mgseawater, as well as for utilizing ancient evaporitic sequences as an archive for past δ26Mgseawater. Here, we estimate the Mg isotope fractionation between Mg-evaporites and modern marine-derived brine along the course of seawater evaporation, up to degree evaporation of >200. The sequence of Mg-salts included epsomite (MgSO4·7H2O), kainite (KMgClSO4·3H2O), carnallite (KMgCl3·6H2O), kieserite (MgSO4·H2O) and bischofite (MgCl2·6H2O). The following isotope fractionation values, either negative or positive, were calculated from the isotope difference between the salt and its precipitating brine, and from the evolution of δ26Mg in the brine throughout the evaporation: Δcarnallite-brine = +1.1‰, Δepsomite-brine = +0.59‰, Δbischofite-brine = +0.33‰, Δkieserite-brine = −0.2‰ and Δkainite-brine = −1.3‰. Magnesium isotopic compositions determined on minerals from different ages in the geological record corroborate well these results. Due to precipitation of multi-mineral assemblages having isotope fractionation values of opposing signs, the δ26Mg value of the brine changes only slightly (50%). The isotope fractionations are shown to correlate with the number of water molecules coordinated to the Mg2+ and with Mg-O bond length in the mineral lattice. Given these isotope fractionations, it is calculated that a volume of 0.4 · 106–0.8 · 106 Km3 of a mono-mineral assemblage of kainite or carnallite needs to precipitate in order to change seawater δ26Mg by only 0.1‰. This huge volume is by far larger than the volume of these minerals known to date in the global geological record. Therefore, it is concluded that the impact of Mg-evaporites formation on δ26Mgseawater has been insignificant since the Proterozoic. The results of this study suggest that the Mg isotopic composition of Mg-evaporites preserved in the geological record of evaporitic basins may be used to: 1) quantify geochemical processes that fractionate Mg-isotopes within these basins, such as dolomitization; and 2) complete the secular variations curve of the marine δ26Mg record using basins with well-established evaporitic sequences.ISSN:0016-7037ISSN:1872-953

    Bromine and Carbon Isotope Effects during Photolysis of Brominated Phenols

    No full text
    In the present study, carbon and bromine isotope effects during UV-photodegradation of bromophenols in aqueous and ethanolic solutions were determined. An anomalous relatively high inverse bromine isotope fractionation (ε<sub>reactive position</sub> up to +5.1‰) along with normal carbon isotope effect (ε<sub>reactive position</sub> of −12.6‰ to −23.4‰) observed in our study may be attributed to coexistence of both mass-dependent and mass-independent isotope fractionation of C–Br bond cleavage. Isotope effects of a similar scale were observed for all the studied reactions in ethanol, and for 4-bromophenol in aqueous solution. This may point out related radical mechanism for these processes. The lack of any carbon and bromine isotope effects during photodegradation of 2-bromophenol in aqueous solution possibly indicates that C–Br bond cleavage is not a rate-limiting step in the reaction. The bromine isotope fractionation, without any detectable carbon isotope effect, that was observed for 3-bromophenol photolysis in aqueous solution probably originates from mass-independent fractionation

    Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: Implications for paleoclimate research in semiarid regions

    No full text
    In a semiarid climatic zone, such as the Eastern Mediterranean region, annual rainfall variations and fractionation processes in the epikarst zone exert a profound influence on the isotopic compositions of waters seeping into a cave. Consequently, the isotopic compositions of speleothems depositing from cave waters may show complex variations that need to be understood if they are to be exploited for paleoclimate studies. This is confirmed by a four-year study of the active carbonate-water system in the Soreq cave (Israel). The δ18O (SMOW) values of cave waters range from −6.3 to −3.5%.. The highest δ18O values occur at the end of the dry season in waters dripping from stalactites, and reflect evaporation processes in the epikarst zone, whereas the lowest values occur in rapidly dripping (fast-drip) waters at the peak of the rainy seasons. However, even fast-drip waters are about 1.5%. heavier than the rainfall above the cave, which is taken to reflect the mixing of fresh with residual evaporated water in the epikarst zone. δ13C (PDB) values of dissolved inorganic carbon (DIC) vary from −15.6 to −5.4%., with fast-drip waters having lower δ13C values (mostly −15.6 to −12%.) and higher DIC concentrations relative to pool and stalactite-drip water. The low δ13C values of fast-drip waters and their supersaturation with respect to calcium carbonate indicates that the seepage waters have dissolved both soil-CO2 derived from overlying C3-type vegetation and marine dolomite host rock. The δ18O (PDB) values of various types of present-day low-magnesium calcite (LMC) speleothems range from −6.5 to −4.3%. and δ13C values from −13 to −5.5%. and are not correlated with speleothem type. An analysis of δ18O values of present-day calcite rafts and pool waters shows that they form in oxygen isotope equilibrium. Similarly, the measured ranges of δ13C and δ18O values for all types of present-day speleothems are consistent with equilibrium deposition at cave temperatures. The δ13C–δ18O range of contemporary LMC thus reflects the va
    corecore