804 research outputs found

    Magnetic collimation of meridional-self-similar general relativistic MHD flows

    Full text link
    We present a model for the spine of relativistic MHD outflows in the Kerr geometry. Meridional self-similarity is invoked to derive semi-analytical solutions close to the polar axis. The study of the energy conservation along a particular field line gives a simple criterion for the collimation of jets. Such parameter have already been derived in the classical case by Sauty et al. 1999 and also extended to the Schwarzschild metric by Meliani et al. 2006. We generalize the same study to the Kerr metric. We show that the rotation of the black hole increases the magnetic self-confinement.Comment: 16 pages, 6 figures, accepted for publication in Physical Review

    Metrics and Pairs of Left and Right Connections on Bimodules

    Full text link
    Properties of metrics and pairs consisting of left and right connections are studied on the bimodules of differential 1-forms. Those bimodules are obtained from the derivation based calculus of an algebra of matrix valued functions, and an SL\sb q(2,\IC)-covariant calculus of the quantum plane plane at a generic qq and the cubic root of unity. It is shown that, in the aforementioned examples, giving up the middle-linearity of metrics significantly enlarges the space of metrics. A~metric compatibility condition for the pairs of left and right connections is defined. Also, a compatibility condition between a left and right connection is discussed. Consequences entailed by reducing to the centre of a bimodule the domain of those conditions are investigated in detail. Alternative ways of relating left and right connections are considered.Comment: 16 pages, LaTeX, nofigure

    Non-Born-Oppenheimer variational calculation of the ground-state vibrational spectrum of LiH+

    Get PDF
    Very accurate, rigorous, variational, non-Born-Oppenheimer non-BO calculations have been performed for the fully symmetric, bound states of the LiH+ ion. These states correspond to the ground and excited vibrational states of LiH+ in the ground 2 + electronic state. The non-BO wave functions of the states have been expanded in terms of spherical N-particle explicitly correlated Gaussian functions multiplied by even powers of the internuclear distance and 5600 Gaussians were used for each state. The calculations that, to our knowledge, are the most accurate ever performed for a diatomic system with three electrons have yielded six bound states. Average interparticle distances and nucleus-nucleus correlation function plots are presente

    A novel method of experimental determination of grain stresses and critical resolved shear stresses for slip and twin systems in a magnesium alloy

    Full text link
    A novel original method of determination of stresses and critical resolved shear stresses (CRSSs) using neutron diffraction was proposed. In this method, based on the crystallite group method, the lattice strains were measured in different directions and using different reflections hkl during uniaxial deformation of magnesium alloy AZ31. The advantage of this method is that the stresses for groups of grains having similar orientations can be determined directly from measurement without any models used for data interpretation. The obtained results are unambiguous and do not depend on the models assumptions as in previous works. Moreover, it was possible for the first time to determine the uncertainty of the measured CRSS values and local stresses at groups of grains. The used methodology allowed for the determination of stress partitioning between grains having different orientations and for an explanation of the anisotropic mechanical behaviour of the strongly textured alloy. Finally, the CRSS values allowed for the validation of the type of intergranular interaction assumed in the elastic-plastic self-consistent model and for a significant reduction of the number of unknown parameters when the model is adjusted to the experimental data.Comment: 61 pages, 31 figures, 6 pages in Appendix, Accepted in Measuremen

    A novel method of experimental determination of grain stresses and critical resolved shear stresses for slip and twin systems in a magnesium alloy

    Get PDF
    A novel original method of determination of stresses and critical resolved shear stresses (CRSSs) using neutron diffraction was proposed. In this method, based on the crystallite group method, the lattice strains were measured in different directions and using different reflections hkl during uniaxial deformation of magnesium alloy AZ31. The advantage of this method is that the stresses for groups of grains having similar orientations can be determined directly from measurement without any models used for data interpretation. The obtained results are unambiguous and do not depend on the models assumptions as in previous works. Moreover, it was possible for the first time to determine the uncertainty of the measured CRSS values and local stresses at groups of grains. The used methodology allowed for the determination of stress partitioning between grains having different orientations and for an explanation of the anisotropic mechanical behaviour of the strongly textured alloy. Finally, the CRSS values allowed for the validation of the type of intergranular interaction assumed in the elastic–plastic self-consistent model and for a significant reduction of the number of unknown parameters when the model is adjusted to the experimental data

    The Effects of Malignant Transformation on Susceptibility of Human Urothelial Cells to CD40-Mediated Apoptosis

    Get PDF
    Background: The tumor necrosis factor (TNF) superfamily of ligands and receptors mediates immune cell survival. Some members possess a death domain, a protein motif that functions to transmit apoptotic signals, whereas others, such as CD40, do not. CD40 is expressed by both normal and malignant epithelial cells. To investigate the functional significance of this expression, we studied the effects of ligation of CD40, Fas, and TNF receptors (TNFRs) on the proliferation and survival of normal and malignant human urothelial cells and urothelial cells with disabled p53 function. Methods: Normal and malignant human urothelial cells were cultured with soluble TNF family agonists (CD40 ligand [CD40L], TNF-α, anti-Fas antibody, or cocultured with mouse fibroblasts stably transfected with plasmids that caused the cells to constitutively express CD40L or CD32; cell proliferation was estimated by an [3H]thymidine incorporation assay, and apoptosis was determined by Annexin V staining and by a DNA fragmentation assay. Messenger RNA levels for CD40 and potential downstream effector molecules were quantified by polymerase chain reaction-based and ribonuclease protection assays, respectively, and nuclear factor (NF) κB nuclear translocation was detected by immunofluorescence. All statistical tests were two-sided. Results: Soluble trimeric CD40L inhibited the growth of normal and malignant urothelial cells but did not induce apoptosis. Cell surface-presented CD40L induced massive apoptosis in CD40-positive transitional cell carcinoma cells but not in normal urothelial cells. Normal cells underwent CD40L-mediated apoptosis only in the presence of other TNFR agonists. An agonistic anti-CD40 antibody presented on the surface of CD32-transfected fibroblasts also induced apoptosis in transitional cell carcinoma cells and in normal urothelial cells. Apoptotic responses of tumor (but not normal) cells to soluble agonists were enhanced by blocking protein synthesis. Karyotypically normal urothelial cells with disabled p53 function underwent apoptosis during coculture with CD40L-expressing fibroblasts alone but were not additionally sensitive to additional TNFR agonists. Conclusions: Susceptibility to CD40 ligation-induced apoptosis may be a novel mechanism for eliminating neoplastically transformed urothelial cells. Loss of CD40 expression may be an important adaptive mechanism for transitional cell carcinoma development and progressio
    corecore