11,294 research outputs found

    Friction and wear in cryogenic liquids for composites of phenolic and of polytetrafluoroethylene of various particle sizes and concentrations

    Get PDF
    Friction and wear in cryogenic liquids for phenolic and polytetrafluoroethylene composites of various particle sizes and concentration

    Interaction effects and transport properties of Pt capped Co nanoparticles

    Get PDF
    We studied the magnetic and transport properties of Co nanoparticles (NPs) being capped with varying amounts of Pt. Beside field and temperature dependent magnetization measurements we performed delta-M measurements to study the magnetic interactions between the Co NPs. We observe a transition from demagnetizing towards magnetizing interactions between the particles for an increasing amount of Pt capping. Resistivity measurements show a crossover from giant magnetoresistance towards anisotropic magnetoresistance

    Time scale, objectivity and irreversibility in quantum mechanics

    Full text link
    It is argued that setting isolated systems as primary scope of field theory and looking at particles as derived entities, the problem of an objective anchorage of quantum mechanics can be solved and irreversibility acquires a fundamental role. These general ideas are checked in the case of the Boltzmann description of a dilute gas.Comment: 13 pages, latex, no figures, to appear in the Proceedings of the XXI International Colloquium on Group Theoretical Methods in Physics, 1996 (Goslar, Germany

    Effect of a Magnetic Field on the Dipole Echo in Glasses with Nuclear Quadrupole Moments

    Full text link
    The effect of a magnetic field on the dipole echo amplitude in glasses at temperatures of about 10 mK caused by nonspherical nuclei with electric quadrupole moments has been studied theoretically. It has been shown that in this case, the two-level systems (TLS's) that determine the glass properties at low temperatures are transformed into more complicated multilevel systems. These systems have new properties as compared to usual TLS's and, in particular, exhibit oscillations of electric dipole echo amplitude in magnetic field. A general formula that describes the echo amplitude in an arbitrary split TLS has been derived with perturbation theory. Detailed analytic and numerical analysis of the formula has been performed. The theory agrees qualitatively and quantitatively well with experimental data.Comment: 5 pages, 3 figure

    Full photon statistics of a light beam transmitted through an optomechanical system

    Full text link
    In this paper, we study the full statistics of photons transmitted through an optical cavity coupled to nanomechanical motion. We analyze the entire temporal evolution of the photon correlations, the Fano factor, and the effects of strong laser driving, all of which show pronounced features connected to the mechanical backaction. In the regime of single-photon strong coupling, this allows us to predict a transition from sub-Poissonian to super-Poissonian statistics for larger observation time intervals. Furthermore, we predict cascades of transmitted photons triggered by multi-photon transitions. In this regime, we observe Fano factors that are drastically enhanced due to the mechanical motion.Comment: 8 pages, 7 figure

    An electrostatically defined serial triple quantum dot charged with few electrons

    Full text link
    A serial triple quantum dot (TQD) electrostatically defined in a GaAs/AlGaAs heterostructure is characterized by using a nearby quantum point contact as charge detector. Ground state stability diagrams demonstrate control in the regime of few electrons charging the TQD. An electrostatic model is developed to determine the ground state charge configurations of the TQD. Numerical calculations are compared with experimental results. In addition, the tunneling conductance through all three quantum dots in series is studied. Quantum cellular automata processes are identified, which are where charge reconfiguration between two dots occurs in response to the addition of an electron in the third dot.Comment: 12 pages, 9 figure

    Frame formalism for the N-dimensional quantum Euclidean spaces

    Full text link
    We sketch our recent application of a non-commutative version of the Cartan `moving-frame' formalism to the quantum Euclidean space RqNR^N_q, the space which is covariant under the action of the quantum group SOq(N)SO_q(N). For each of the two covariant differential calculi over RqNR^N_q based on the RR-matrix formalism, we summarize our construction of a frame, the dual inner derivations, a metric and two torsion-free almost metric compatible covariant derivatives with a vanishing curvature. To obtain these results we have developed a technique which fully exploits the quantum group covariance of RqNR^N_q. We first find a frame in the larger algebra \Omega^*(R^N_q) \cocross \uqs. Then we define homomorphisms from R^N_q \cocross U_q^{\pm}{so(N)} to RqNR^N_q which we use to project this frame in Ω(RqN)\Omega^*(R^N_q).Comment: Latex file, 11 pages. Talks given at the Euroconference ``Non-commutative Geometry and Hopf Algebras in Field Theory and Particle Physics'', Villa Gualino (Torino), Sept. 199

    Field-induced structural aging in glasses at ultra low temperatures

    Full text link
    In non-equilibrium experiments on the glasses Mylar and BK7, we measured the excess dielectric response after the temporary application of a strong electric bias field at mK--temperatures. A model recently developed describes the observed long time decays qualitatively for Mylar [PRL 90, 105501, S. Ludwig, P. Nalbach, D. Rosenberg, D. Osheroff], but fails for BK7. In contrast, our results on both samples can be described by including an additional mechanism to the mentioned model with temperature independent decay times of the excess dielectric response. As the origin of this novel process beyond the "tunneling model" we suggest bias field induced structural rearrangements of "tunneling states" that decay by quantum mechanical tunneling.Comment: 4 pages, 4 figures, accepted at PRL, corrected typos in version

    Quantum measurement problem and cluster separability

    Get PDF
    A modified Beltrametti-Cassinelli-Lahti model of measurement apparatus that satisfies both the probability reproducibility condition and the objectification requirement is constructed. Only measurements on microsystems are considered. The cluster separability forms a basis for the first working hypothesis: the current version of quantum mechanics leaves open what happens to systems when they change their separation status. New rules that close this gap can therefore be added without disturbing the logic of quantum mechanics. The second working hypothesis is that registration apparatuses for microsystems must contain detectors and that their readings are signals from detectors. This implies that separation status of a microsystem changes during both preparation and registration. A new rule that specifies what happens at these changes and that guarantees the objectification is formulated and discussed. A part of our result has certain similarity with 'collapse of the wave function'.Comment: 31 pages, no figure. Published versio
    corecore