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Abstract A modified Beltrametti-Cassinelli-Lahti model of the measurement appa-
ratus that satisfies both the probability reproducibility condition and the objectifica-
tion requirement is constructed. Only measurements on microsystems are considered.
The cluster separability forms a basis for the first working hypothesis: the current ver-
sion of quantum mechanics leaves open what happens to systems when they change
their separation status. New rules that close this gap can therefore be added with-
out disturbing the logic of quantum mechanics. The second working hypothesis is
that registration apparatuses for microsystems must contain detectors and that their
readings are signals from detectors. This implies that the separation status of a mi-
crosystem changes during both preparation and registration. A new rule that specifies
what happens when these changes occur and that guarantees the objectification is for-
mulated and discussed. A part of our result has certain similarities with ‘collapse of
the wave function’.

Keywords Quantum measurement problem · Registration apparatus · Detectors ·
Identical particles

1 Introduction

Discussions about the nature of quantum measurement were started already by found-
ing fathers of the theory, persisted throughout and seem even to amplify at the present
time.

An old approach to the problem of quantum measurement is Bohr’s (its newer,
rigorously reformulated version is Refs. [1, 2]). This approach denies that measur-
ing apparatuses, and all classical systems in general, are quantum systems in the
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sense that all their properties can be derived from, or are compatible with, quantum
mechanics. They must be described by other theories, called pretheories. Of course
some classical properties of macroscopic systems can be obtained by quantum statis-
tics. References [3, 4] show that such occasional applications of quantum mechanics
to classical systems are compatible with the form of denying the universality of quan-
tum mechanics specified there.

Modern approaches assume the universality of quantum mechanics together with
various further ideas. An example is the quantum decoherence theory [5, 6], another
the superselection sectors approach [7, 8], etc. However, the problem is far from
being satisfactorily solved by any of the modern theories. Analysis of Refs. [9–11],
as well as of our previous papers [12, 13], give an account of their shortcomings. In
the present paper, we adopt the definition of the problem and the proof that it is far
from being solved from Ref. [10].

Our starting point is the realist interpretation of quantum mechanics of Ref. [12] as
well as the quantum theory of classical systems of Refs. [12, 13]. To solve the quan-
tum measurement problem, additional ideas seem necessary and we propose some
such ideas in the present paper. They might work in general, but we consider here
only a special case. First, we assume the validity of non-relativistic quantum me-
chanics. Second, we restrict ourselves to measurements performed on microsystems
such as elementary particles or systems composite of few particles. There are other
systems on which recently a lot of interesting experiments have been done, such as
Bose-Einstein condensates, strong laser beams or currents in superconductor rings.
Such quantum states of ‘large’ systems, sometimes even macroscopic, will be ignored
here. Third, we shall work within a simplified theoretical model of measurement due
to Beltrametti, Cassinelli and Lahti [14]. Fourth, our theory will consider only those
registrations in which the reading of registration apparatus is an electronic signal from
a detector.

The main idea of the paper is a new assessment of the role that the existence of
indistinguishable microsystems plays in general methods of quantum mechanics and
in the special case of preparation and registration processes. Quantum systems can
be divided into two classes according to the method of their description. First, there
are particles and systems composite of particles of different type. Any of these and of
their subsystems is a full-fledged quantum system S possessing a Hilbert space HS .
HS determines set of states T (HS )+1 (positive operators with trace 1) and set of ef-
fects L(HS )+≤1 (positive operators with norm bounded by 1 such as projections) from
which its observables are constructed (for details, see [1, 2, 10]). The existence of this
description and its physical meaning enabled us in Ref. [12] to view S as a physical
object. Indeed, S has a sufficient number of objective properties because e.g. any ele-
ment of T (HS )+1 can serve as a prepared state of S , and is then an objective property
of S (for discussion, see Refs. [12, 13]). However, there are also systems composite
of more than one particle of the same type. Then, there is only a common formal one-
particle Hilbert space from which a physical Hilbert space, states and observables
of the whole system are constructed. Only the observables of the whole system are
measurable. Thus, while the whole system is an object, none of the particles is. They
are described in a different way, we call them subobjects and they form the second
class of quantum systems.
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Only few textbooks (such as Ref. [15]) mention that these two modes of descrip-
tion contain a germ of contradiction (even without realist interpretations). Indeed, if
we realise that the world is composite of many particles and that particles of each
type occur in a huge number, then the justification of description of any such particle
as an object, i.e., as if there were no other particles of the same type, seems to be
strange. Nevertheless, such description can be justified and one justification is based
on the idea of cluster separability of Ref. [15], p. 128. We reformulate this idea, intro-
duce the notion of separation1 status, such as that of object or subobject, and find that
there are consequences which can have some bearing on the quantum measurement
problem.

If one applies the rules of ordinary quantum mechanics to microsystems that
change their separation status, one can obtain wrong results. The theory cannot be
expected to give reliable predictions in these cases. Our strategy in dealing with this
problem will be first to calculate as if the ordinary quantum mechanics were applica-
ble and then to see whether the observational evidence suggests any corrections. From
the formally logical point of view, the current version of quantum mechanics ought
to be understood as a theory of systems that have a fixed separation status and is thus
incomplete. Hence, there is a possibility to add new rules to it without interference
with its own notions and rules.

The plan of the paper is as follows. Section 2 summarises the Beltrametti-
Cassinelli-Lahti model, defines the quantum-measurement problem and sketches a
simple no-go theorem, using ideas of Ref. [10]. Section 3 analyses experiments with
microsystems in order to motivate the assumption that reading of any real registra-
tion apparatus is a signal from a detector. This makes registration processes nearer to
practice and, more importantly, it allows us to show that a microsystem changes its
separation status during registration.

Section 4 reformulates the idea of cluster separability of Ref. [15] in more rigor-
ous terms. This facilitates the introduction of the key notions of the paper: the separa-
tion status of a microsystem and its changes. In Sect. 5, Beltrametti-Cassinelli-Lahti
model is modified so that it can describe a simplified ideal detector and corrected
by adding a new rule, Rule 2. It is based on empirical observations, in particular on
the well-known fact that any individual registration yields a definite value (the objec-
tification requirement). In the formulation of Rule 2, correlations play an important
role. Appendix A describes the mathematical construction of D-local observables and
Appendix B contains a proof that an entangled vector state of a composite system is
completely determined by correlations between observables of a certain set.

The proposed Rule 2 is rather special and it is clear that a more general rule,
or more rules, will be necessary to make quantum mechanics complete. This will
require further work, both theoretical and experimental. This and other questions are
discussed in the Conclusion.

1To prevent misunderstanding, let us mention that the term ‘nonseparability’ is sometimes used in a com-
pletely different sense (e.g., Ref. [11], p. 131) expressing the following valid property of quantum mechan-
ics: a quantum state of a composite system contains more information than the sum of informations in the
states of its constituents does.



Found Phys (2011) 41: 640–666 643

2 Beltrametti-Cassinelli-Lahti Model of Quantum Measurement

In this section, we are going to recapitulate the well-known ideas on measurement
that will be needed later. A summary is [10], p. 25:

. . . the object system S , prepared in a state T is brought into a suitable contact—
a measurement coupling—with another, independently prepared system, the
measurement apparatus from which the result related to the measured observ-
able O is determined by reading the value of the pointer observable.

In Ref. [10], these ideas are developed in detail with the help of models. One of them
is as follows (p. 38). Let a discrete observable O of system S with Hilbert space HS
be measured. Let ok be eigenvalues and {φkj } be the complete orthonormal set of
eigenvectors,

Oφkj = okφkj

of O. The projection EO
k on the eigenspace of ok is then EO

k = ∑
j |φkj 〉〈φkj |. Let the

registration apparatus2 be a quantum system A with Hilbert space HA and an ob-
servable A. Let A be a non-degenerate, discrete observable with the same eigenvalues
ok and with the complete orthonormal set of eigenvectors ψk ,

Aψk = okψk.

The projection on an eigenspace is EA
k = |ψk〉〈ψk|. A will be the pointer observable.

Let the measurement start with the preparation of S in state T and the independent
preparation of A in state TA. The initial state of the composed system S + A is thus
T ⊗ TA.

Let S and A then interact for a finite time by the so-called measurement coupling
and let the resulting state be given by U(T ⊗ TA)U†, where U is a unitary transforma-
tion on HS ⊗ HA.

The final state of the apparatus is trS [U(T ⊗ TA)U†], where trS is the partial trace
over states of S . The first requirement on the model is that this state gives the same
probability measure for the pointer observable as the initial state T predicted for the
observable O:

tr[TEO
k ] = tr[trS [U(T ⊗ TA)U†]EA

k ].
This is called probability reproducibility condition. Now, there is a theorem [14]:

Theorem 1 Let a measurement fulfil all assumptions and conditions listed above.
Then, for any initial vector state ψ of A, there is a set {ϕkl} of unit vectors in HS
satisfying the orthogonality conditions

〈ϕkl |ϕkj 〉 = δlj

2In our language, a measurement consists of preparation and registration so that what Ref. [10] often calls
‘measurement’ is our ‘registration’.



644 Found Phys (2011) 41: 640–666

such that U is a unitary extension of the map

φkl ⊗ ψ �→ ϕkl ⊗ ψk. (1)

One assumes further that the eigenvalues of the pointer observable are uniquely
associated with what will be read on the apparatus after the measurement. Then, the
second requirement on the model is that it has to lead to a definite result. More pre-
cisely, the apparatus must be in one of the states |ψk〉〈ψk| after each individual regis-
tration. This is called objectification requirement. Reference [10] introduces a more
general concept of measurement that leaves open whether the objectification require-
ment is satisfied or not. Such a procedure is called premeasurement. A measurement
is then a premeasurement that satisfies objectification requirement.

Suppose that the initial state of S is an eigenstate, T = |φkl〉〈φkl |, with the eigen-
value ok . Then, (1) implies that the final state of apparatus A is |ψk〉〈ψk|, and the
premeasurement does lead to a definite result. However, suppose next that the initial
state is an arbitrary vector state, T = |φ〉〈φ|. Decomposing φ into the eigenstates,

φ =
∑

kl

cklφkl,

we obtain from (1)

U(φ ⊗ ψ) =
∑

k

√
pO

φ (ok)�k ⊗ ψk, (2)

where

�k =
∑

l cklϕkl
√

〈∑l cklϕkl |∑j ckjϕkj 〉
(3)

and

pO
φ (ok) =

〈∑

l

cklϕkl

∣
∣
∣
∣

∑

j

ckjϕkj

〉

is the probability that a registration of O performed on vector state φ gives the value
ok . The final state of apparatus A then is

trS [U(T ⊗ TA)U†] =
∑

kl

√
pO

φ (ok)

√
pO

φ (ol)〈�k|�l〉|ψk〉〈ψl |. (4)

Because of the orthonormality of |ψk〉’s, the probability that the apparatus shows
the value ok if A is registered on it in this final state is pO

φ (ok), which is what the
probability reproducibility requires. However, if the objectification requirement is to
be satisfied, two condition must be met:

(A) The final state of the apparatus must the convex combination of the form

trS [U(T ⊗ TA)U†] =
∑

j

pO
φ (oj )|ψj 〉〈ψj |. (5)
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(B) The right-hand side of (5) must be the gemenge structure of the state.

The notion of gemenge will play an important role in the reasoning of the present
paper. The term has been introduced in Ref. [10], some authors (e.g., Ref. [11]) use
also the term ‘proper mixture’, Ref. [1, 2] calls it ‘direct mixture’. The crucial point
is that the convex decomposition

T =
n∑

k=1

wkTk (6)

of any state T (state operator) can be a gemenge only if its preparation procedure P(T)

is a random mixture with rates (frequencies) wk of preparations P(Tk), where each
P(Tk) is some preparation procedure for Tk , k = 1, . . . , n. The preparation mixture
can be done by humans or result from some process in nature.

Thus, gemenge concerns a physical property of preparation rather than any math-
ematical one of the right-hand side of (6) (such as Tk being vector states or being
mutually orthogonal, etc.). From the mathematical point of view, many different con-
vex decompositions of a general state T may exist. All possible components of such
convex combinations form a so-called ‘face’ in the space of state operators (cf. [1],
p. 75). A state is ‘extremal’ if it lies in a zero-dimensional face, that is, if it cannot be
written as a non-trivial convex combination. Extremal states are described by projec-
tions onto one-dimensional subspaces of the Hilbert space. A preparation of T selects
only one of the mathematically possible convex decompositions of T.

A random mixture of preparations is not uniquely determined by the preparation
process. It can be coarsened or refined, i.e., some of P(Tk) can be combined into one
preparation procedure or P(Tk) for some k can itself be a random mixture of other
preparations.

Definition 1 The finest convex decomposition of state T defined by its preparation
as gemenge is called gemenge structure of T.

Thus, gemenge structure of T is uniquely determined by its preparation. For ex-
tremal states, there is always only one gemenge structure, the trivial one, indepen-
dently of how it was prepared.

It may be advantageous to distinguish the mathematical convex combination of
states from their gemenge structure by writing the sum in (6) as follows

T =
(

n∑

k=1

)

gs

wkTk (7)

in the case that the right-hand side is a gemenge structure of T.
The properties that follow directly from the definition of gemenge structure and

that will be needed later are described by the following theorem.
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Theorem 2

1. Gemenge structure is preserved by unitary dynamics,

U

(∑

k

)

gs
wkTkU† =

(∑

k

)

gs
wkUTkU† :

if the sum on the left-hand side describes a gemenge structure of T, then the
gemenge structure of its evolution is described by the sum on the right-hand side.

2. In the following sense, gemenge structure is also preserved by composition of
systems. Let T be a state of a composite system S + S ′. The necessary and sufficient
condition for the partial trace over S ′ to have the gemenge structure described by

trS ′ [T] =
(∑

k

)

gs
wkTk

is that T itself has gemenge structure described by

T =
(∑

k

)

gs
wkTk ⊗ T′

k,

where T′
k are some states of S ′.

All these ideas on gemenges seem to be well known. Now, an important new point
will be added. In Ref. [12], we have accepted the non-objectivity of observables in
its full extent, but we found a sufficient number of objective properties of quantum
systems elsewhere. The summary of the ideas can be stated as follows

Objectivity Assumption A property is objective if its value is uniquely deter-
mined by a preparation according to the rules of standard quantum mechanics.
The ‘value’ is the value of the mathematical expression that describes the prop-
erty and it may be more general than just a real number. No registration is
necessary to establish such a property but a correct registration cannot disprove
its value; in many cases, registrations can confirm the value.

Objectivity Assumption led to a new realist interpretation of quantum mechanics,
see the extended discussion in Ref. [12]. It leads also to a new meaning of gemenge
structure: any individual system prepared in the state (7) is objectively in one of the
states Tk , because each of the systems has been prepared by one of the preparations
P(Tk), and the probability that P(Tk) has been used is wk .

Let us return to our point (B), which can now be written as

trS [U(T ⊗ TA)U†] =
(

∑

j

)

gs

pO
φ (oj )|ψj 〉〈ψj |.

According to the meaning of the gemenge structure, this equation expresses the fol-
lowing property: after each registration, apparatus A is objectively in one of the states
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|ψj 〉〈ψj | and it is in this state with probability pO
φ (oj ). This is exactly what objecti-

fication requirement is meant to be. Thus, the two points (A) and (B) can serve as an
objectification criterion.

We can also understand why Beltrametti-Cassinelli-Lahti model of premeasure-
ment does not satisfy the objectification criterion. Indeed, the end state T ⊗ TA of the
system is U(φ ⊗ ψ) (2), which is a vector state and can therefore have only a trivial
gemenge structure. However, Point 2 of Theorem 2 implies that this is not compati-
ble with state trS [U(T ⊗ TA)U†] being a non-trivial gemenge. Thus, we have shown
a simple no-go theorem. An analogous difficulty holds for more general models of
premeasurement described in Ref. [10] and the book contains more general no-go
theorems. This is called problem of objectification. In fact, our theorem and main
idea of proof are similar to those given in Ref. [10]. The rest of the paper will look
for a reason why the vector state U(φ ⊗ψ) must be replaced by a non-trivial gemenge
so that the objectification criterion can be satisfied.

2.1 Repeatable Premeasurement and Von-Neumann Model

In order to define what a repeatable premeasurement is, we need the notion of state
transformer. To this aim, let us first calculate the final state of system S after a
Beltrametti-Cassinelli-Lahti premeasurement is finished:

trA[U(|φ〉〈φ| ⊗ |ψ〉〈ψ |)U†] =
∑

k

pO
φ (ok)|�k〉〈�k|.

The part of the sum on the right-hand side corresponding to the result of premeasure-
ment lying in the set X is

I(X)(|φ〉〈φ|) =
∑

ok∈X

pO
φ (ok)|�k〉〈�k|. (8)

The right-hand side is not a state, because it is not normalised. Its trace is the proba-
bility that the result lies in X,

pO
T (X) = tr[I(X)(T)]

if the initial state of S is T. The quantity I(X) is an operation-valued measure and is
called state transformer. For more details, see Ref. [10].

Definition 2 A premeasurement is called repeatable if its state transformer satisfies
the equation

tr[I(Y )(I(X)(T))] = tr[I(Y ∩ X)(T)] (9)

for all subsets of possible values X and Y and all possible states T of S .

That is, the repetition of the premeasurement on S does not lead to any new result
from the probabilistic point of view. To see whether the state transformer (8) satisfies
(9), let us rewrite it as follows:
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∑

ok∈X

pO
φ (ok)|�k〉〈�k| =

∑

ok∈X

Kk|φ〉〈φ|K†
k,

where

Kk =
∑

l

|ϕkl〉〈φkl |.

One can show that this relation is general,

I(X)(T) =
∑

ok∈X

KkTK†
k,

for proof, see Ref. [10]. We have then

I(Y )(I(X)(T)) =
∑

ol∈X

Kl

(
∑

ok∈X

KkTK†
k

)

K†
l =

∑

ol∈X

∑

ok∈X

(KlKk)T(KlKk)
†.

Equation (9) would be satisfied if

KlKk = Kkδkl, (10)

which is in general not the case.
Let us therefore restrict ourselves to measurement couplings satisfying

φkl = ϕkl. (11)

This model is called von-Neumann premeasurement because it was first described in
Ref. [16].3

For von-Neumann premeasurement, the operator Kk is the projection EO
k on the

eigenspace of ok ,

Kk =
∑

l

|φkl〉〈φkl |

and (10) is satisfied. Thus, von-Neumann premeasurement is a special case of repeat-
able premeasurement.

The vector states �k given by (3) are orthonormal for von-Neumann premeasure-
ments. Thus, the final state of the apparatus given by (4) reduces to (5) and Point (A)
of our objectification criterion is satisfied. As for Point (B), it is not satisfied even for
the more general Beltrametti-Cassinelli-Lahti model of premeasurement. Hence, the
objectification requirement does not hold for von-Neumann premeasurements, and it
is therefore not a measurement.

Von Neumann himself postulated that measurements define another, non-unitary
and indeterministic kind of evolution in which the state of S randomly jumps into
one of the eigenstates of the measured observable (Ref. [16], pp. 217, 351). This was
called collapse of the wave function by Bohm (Ref. [17], p. 120).

3In fact, von-Neumann premeasurement is slightly more general in the sense that it is a premeasurement
of a function f (O), where f need not be bijective, cf. Ref. [10].
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3 Comparison with Real Experiment. Importance of Detectors

The theoretical models of the previous section ought to describe and explain at least
some aspects of real experiments. This section will try to go into all experimental
details that can be relevant to our theoretical understanding.

First, we briefly collect what we shall need about detectors. Microsystem S to be
detected interacts with the sensitive matter of the detector so that some part of energy
of S is transferred to the detector. Mostly, S interacts with many subsystems of the
sensitive matter exciting each of them because the excitation energy is much smaller
than the energy of S . The resulting subsystem signals are collected, or amplified and
collected so that they can be distinguished from noise. For example, in ionization
detectors, many atoms or molecules of the sensitive matter are turned into electron-
ion pairs. If the energy of S is much higher than the energy of one ionisation, e.g.
about 10 eV, then many electron-ion pairs are produced and the positive as well as
the negative total charge is collected at electrodes [18].

In the so-called cryogenic detectors [19], S interacts, e.g., with superheated su-
perconducting granules by scattering off a nucleus and the phase transition from the
superconducting into the normally conducting phase of only one granule leads to a
perceptible electronic signal. A detector can contain very many granules (typically
109) in order to enhance the probability of such scattering if the interaction between
S and the nuclei is very weak (WIMP, neutrino). Modern detectors are constructed so
that their signal is electronic. For example, to a scintillating film, a photomultiplier is
attached, etc., see Ref. [18].

In any case, in order to make a detector respond S must loose some of its energy to
the detector. The larger the loss, the better the signal. Thus, most detectors are built in
such a way that S looses all its kinetic energy and is absorbed by the detector (in this
way, also its total momentum can be measured). Let us call such detectors absorbing.
If the bulk of the sensitive matter is not large enough, S can leave the detector after
the interaction with it, in which case we call the detector non-absorbing. Observe that
a detector is absorbing even if most copies of S leave the detector without causing a
response but cannot leave if there is a response (e.g., neutrino detectors).

Suppose that S is prepared in such a way that it must cross a detector. Then, the
probability of the detector response is generally η < 1. We call a detector ideal, if
η = 1.

An important assumption, corroborated by all experiments, is that a real detector
either gives a signal or remains silent in each individual registration. This corresponds
here to the objectification requirement.

After these preparatory remarks, consider a typical repeatable premeasurement
as described in textbooks (see, e.g., Ref. [15], p. 27, where it is called ‘repeatable
test’), for example a Stern-Gerlach-like measurement of spin. A coordinate system
{x1, x2, x3} is chosen. Silver atoms evaporate in an oven O , form a beam B0 along
x2-axis passing through a velocity selector S, and then through an inhomogeneous
magnetic field produced by device M1. M1 splits B0 into two beams, B1+ and B1−, of
which B1+ is associated with positive and B1− with negative spin x1-component, the
corresponding vector states being denoted by |1+〉 and |1−〉. Beam B1− is blocked
off by a shield. This is the preparatory part of the experiment.
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Next, beam B1+ runs through another magnetic device, M
(1)
3 with centre at �x(1)

and finally strike an array of ideal detectors {D(1)
k } placed and oriented suitably with

respect to M
(1)
3 . Two detectors of array {D(1)

k } respond, let us denote them by D+ and

D−, revealing the split of B1+ into two beams, B3+ and B3−, caused by M
(1)
3 . Let

the orientation of M
(1)
3 be such that B3+ corresponds to positive and B3− to negative

spin x3-component, the states of silver atoms being |3+〉 or |3−〉. The beams B3+
and B3− are spatially sufficiently separated so that their coordinates �x3+ and �x3− at
the point where they strike the detectors can be considered as classical values. In any
case, they are measured by the detectors in a rather coarse-grained way. Let us call
experiment I what is performed by O , S, M1, M

(1)
3 and {D(1)

k }.
Let us now remove {D(1)

k }, place device M
(2)
3 of the same macroscopic structure

and orientation as M
(1)
3 with centre position �x(2) in the way of B3+ so that B3− passes

by and arrange array {D(2)
k } so that it has the same relative position with respect to

M
(2)
3 as {D(1)

k } had with respect to M
(1)
3 . Now, only one detector will respond, namely

that at the position �x3+ − �x(1) + �x(2). Let us call experiment II what is performed

by O , S, M1, M
(1)
3 , M

(2)
3 and {D(2)

k }. The result of experiment II is described as
‘two consecutive identical tests following each other with a negligible time interval
between them . . . yield identical outcomes’ in Ref. [15].

Clearly, experiment II does not consist of two copies of experiment I performed
after each other. The only repetition is that device M

(2)
3 is placed after M

(1)
3 and

has the same structure and orientation with respect to its incoming beam B3+ as
M

(1)
3 has with respect to B1+. Device M

(1)
3 splits B1+ into B3+ and B3− but M

(2)
3

does not split B3+. One may say that it leaves B3+ unchanged. Let us define the
action of device M

(k)
3 together with the choice of (±)-beam for each k = 1,2 as a test

(in the sense of Ref. [15]) or a premeasurements. Let the outcomes be the thought
response of an imaginary detector placed in the way of the chosen beam. Then the
(counterfactual) outcomes can be assumed to be identical indeed and we have an
example of repeatable premeasurement that satisfies Definition 1.

The procedures defined in this way are premeasurements that can be described
by von-Neumann model. The macroscopic positions �x3+ or �x3− of the atom after it
passes the magnet can be considered as the eigenvalues of the pointer observable as-
sociated with effects |3±〉〈3 ±|. However, the premeasurement cannot be considered
as an instance of registration because it does not give us any information about the
silver atoms. Try to suppose, e.g., that the arrangement measures effects |3±〉〈3 ± |
depending on which of the outgoing beams is chosen. Now, how can we recognise
whether the outcome is ‘yes’ or ‘not’? There is no change of a classical property of
an apparatus due to its interaction with a microsystem that would indicate which of
the values �x3+ and �x3− results. But premeasurement is allowed not to give definite
responses by each individual action. To obtain definite values, additional detectors
are needed. Without the additional detector, however, this real premeasurement is not
a measurement.

Suppose next that there are non-absorbing ideal detectors that do not disturb the
spin state of the atom. This might work, at least approximately. Let experiment I’
be the same as I with the only change that the array {D(1)

k } is replaced by {Dp(1)
k }
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containing the non-absorbing detectors. Let experiment II’ starts as I’ and proceeds
as II but with {D(2)

k } replaced by {Dp(2)
k } made from the non-absorbing detectors.

Clearly, the action of (M
(j)

3 + {Dp(j)
k }) for each j = 1,2 is a repeatable premeasure-

ment according to Definition 5, and it is even a repeatable measurement because of
the responses of the real detectors, but it definitely cannot be described by a von-
Neumann theoretical model. For the detectors to response, some part of the energy of
the atoms is needed, so that condition (11) is not satisfied.

An interesting difference emerges here between what we can say about the system
(silver atom) on the one hand and about states on the other in their relation to the
beams B3+ and B3−. Whereas B3+ is associated with |3+〉 and B3− with |3−〉, each
atom is in a linear superposition of the two states |3+〉 and |3−〉 that equals to the
prepared state |1+〉. One can not even say that all atoms in beam B3+ are in state
|3+〉 because no atom is just in B3+. Unlike the states, the atoms are not divided
between the beams. Indeed, the two beams could be guided so that no detectors are
in their two ways and that they meet each other again. Then, they would interfere
and if the two ways are of equal length, so that no relative phase shift results, the
original state |1+〉 would result. This would happen even if the beams are very thin,
containing always at most one silver atom. Hence, each atom had to go both ways
simultaneously.

Let us observe that each of the beams B3+ and B3− by itself behave as if it were a
prepared beam of silver atoms in a known state, which is |3+〉 and |3−〉, respectively.
The voluntary element of beam choice in this experiment can be interpreted neither
as a preparation, nor as a reselection of ensemble, nor as a collapse of the wave
function. The fact that we place some arrangement A of devices that do not contain
any detector in the way of beam B3+ and leave B3− alone justifies our use of state in
|3+〉 in all calculations of what will be the outcome after arrangement A is passed.
However, the whole outcome will be a linear superposition of states in each of the
two beams at the time the upper beam passes A. Only if we put any detector after A

or, for that matter, a detector or just a shield into the way of B3−, then something like
a collapse of the wave function can happen. The arrangement with the shield in the
way of B3− is a preparation of the vector state |3+〉.

The analysis of the present section motivates the following generalisation. First,
an arrangement of devices that acts in agreement with von-Neumann model of pre-
measurement is neither a registration nor a preparation apparatus. Second:

Rule 1 Any registration apparatus for microsystems must contain at least one detec-
tor and every reading of an apparatus value is a signal from a detector.

If Rule 1 turns out not to be generally valid, then our theory of quantum measurement
will work at least for those many cases in which it is.

4 Cluster Separability

Quantum systems of the same type are indistinguishable and this leads to entangle-
ment. It seems then, that experiments with one particle might be disturbed by another
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particle of the same type, even if it were prepared independently, far away from the
first. One can avoid similar problems by adding some assumption of locality to the
axioms of quantum mechanics.

In the relativistic theory, one starts with the requirement that space-time symme-
tries of an isolated system (i.e., that is alone in space) be realised by unitary represen-
tations of Poincaré group on the Hilbert space of states, see Refs. [20] and [21]. Then,
the cluster decomposition principle, a locality assumption, states that if multi-particle
scattering experiments are studied in distant laboratories, then the S-matrix element
for the overall process factorizes into those concerning only the experiments in the
single laboratories. This ensures a factorisation of the corresponding transition prob-
abilities, so that an experiment in one laboratory cannot influence the results obtained
in another one. Cluster decomposition principle implies non-trivial local properties
of the theory underlying the S-matrix, in particular it plays a crucial part in making
local field theory inevitable (cf. Ref. [20], Chap. 4).

In the phenomenological theory of relativistic or non-relativistic many-body sys-
tems, Hilbert space of an isolated system must also carry a unitary representation
of Poincaré or Galilei group. Then, the so-called cluster separability is a locality as-
sumption, see, e.g., Refs. [22] or [23] and references therein. It is a condition on
interaction terms in the generators of the space-time symmetry group saying: if the
system is separated into disjoint subsystems (= clusters) by a sufficiently large space-
like separation, then each subsystem behaves as an isolated system with a suitable
representation of space-time symmetries on its Hilbert space, see Ref. [22], Sect. 6.1.
Let’s call this principle cluster separability I.

Another special case of locality assumption has been described by Peres, Ref. [15],
p. 128. Let us reformulate it as follows

Cluster Separability II No quantum experiment with a system in a local laboratory
is affected by the mere presence of an identical system in remote parts of the universe.

It is well known (see, e.g., Ref. [15], p. 136) that this principle leads to restrictions on
possible statistics (fermions, bosons). What is less well known is that it also motivates
non-trivial locality conditions on states that can be prepared and on observables that
can be registered.

The locality condition is formulated in Ref. [15], p. 128:

. . . a state w is called remote if ‖Aw‖ is vanishingly small, for any operator
A which corresponds to a quantum test in a nearby location. . . . We can now
show that the entanglement of a local quantum system with another system in
a remote state (as defined above) has no observable effect.

This is a condition on A inasmuch as there has to be at least one remote state for A.
However, Peres does not warn that the standard operators of quantum mechanics,

which are in fact generators of space-time symmetries, do not satisfy his condition
on A. Similarly, basic observables of relativistic-field or many-body theories are gen-
erators of Poincaré or Galilei groups and so they do not satisfy the locality condition,
either. It follows that cluster separability II is logically independent from the cluster
decomposition or of cluster separability I. Of course, this does not mean that the basic
observables are to be rejected. They are very useful if the assumption of isolated sys-
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tem is a good approximation. However, it is definitely a bad one for quantum theory
of measurement.

The present section expresses Peres’ locality condition with the help of the so-
called D-local observables. Based on this analysis, it then introduces the key no-
tions of separation status and of its change. This is a modification of standard quan-
tum mechanics that leads to a possibility of prescribing new rules for evolution of
systems changing their separation status. Let us explain everything, working in Q-
representation of the common Hilbert space H and of operators on it, which will be
represented by their kernels. Then, one can also write tensor products as ordinary
products and indicate the order of factors by indices at system coordinates.

Suppose that vector state ψ(�x1) of particle 1 is prepared in our laboratory as if
no other particle of this type existed. Next, let vector state φ(�x2) of particle 2 of the
same type be prepared simultaneously in a remote laboratory. Then the state of the
two particles must be

�(�x1, �x2) = 1√
2
(ψ(�x1)φ(�x2) ± φ(�x1)ψ(�x2)) (12)

depending on the type statistics. If an observable with kernel a(�x1; �x′
1) is now mea-

sured in our laboratory, it is equally possible that the measurement is made on particle
1 or 2 and both can make a contribution to the outcome. Hence, the correct observable
is described by two-particle kernel

A(�x1, �x2; �x′
1, �x′

2) = a(�x1; �x′
1)δ(�x2 − �x′

2) + a(�x2; �x′
2)δ(�x1 − �x′

1). (13)

In our language, the composite system of the two particles is an object but each of
the two particles is only a subobject. Thus, none of the particles possesses its stan-
dard set of states and standard set of effects. There is only a common one-particle
Hilbert space, common standard set of one-particle states and common standard set
of one-particle effects that the two particles share and that are formally equivalent
to those of particle 1 if it were an object. These sets have only a formal, auxiliary
significance. From the common Hilbert space, the physical Hilbert space of the com-
posite system is formed by (anti)symmetrised tensor power containing states such
as (12). From the formal point of view, a(�x1; �x′

1) (i.e., a ⊗ 1) is not an operator on
the (anti)symmetrised Hilbert space, but the operator (13) is. From the experimental
point of view, the observable with kernel a(�x1; �x′

1) is not measurable but that with
kernel (13) is.

There seems to be no control of states that are prepared anywhere in the world
and the different possibilities have different measurable consequences. For example,
the position of particle 1 as an object (i.e., without particle 2) has kernel a(�x1; �x′

1) =
�x1δ(�x1 − �x′

1) and suppose that the position is measured. Then, the average is
∫

d3x1 �x1ψ
∗(�x1)ψ(�x1).

On the other hand, the existence of particle 2 leads to the average
∫

d3x1d
3x2d

3x′
1d

3x′
2�

∗(�x′
1, �x′

2)A(�x1, �x2; �x′
1, �x′

2)�(�x1, �x2)



654 Found Phys (2011) 41: 640–666

=
∫

d3x1 �x1ψ
∗(�x1)ψ(�x1) +

∫

d3x1 �x1φ
∗(�x1)φ(�x1).

The bigger the distance particle 2 has, the bigger the difference is.
Cluster separability II can now be stated as follows. The change of S1 state due

to some actions in a remote laboratory would not be measurable if the wave-function
support of the remote system did not intersects domain D of the laboratory and if the
observables that are measured were D-local in the following sense.

Definition 3 Let a(�x1; �x′
1) be an observable of S1, let D be a domain of �x1 and let

∫

d3x1a(�x1; �x′
1)f (�x1) =

∫

d3x′
1a(�x1; �x′

1)f ( �x′
1) = 0 (14)

if (supp f ) ∩ D = ∅, where f is a test function. Let us call such operators D-local.

Let us assume that (supp ψ) ⊂ D and (supp φ) ∩ D = ∅. If S2 has been prepared
and the D-local kernel aD(�x1, �x′

1) is used instead of a(�x1; �x′
1) in formula (13) defining

operator AD instead of A and we obtain

∫

D

d3x1

∫

D

d3x′
1

∫

D

d3x2

∫

D

d3x′
2�

∗(�x1, �x2)AD(�x1, �x′
1; �x2, �x′

2)�(�x′
1, �x′

2)

=
∫ ∞

−∞
d3x1

∫ ∞

−∞
d3x′

1ψ
∗(�x1)a(�x1; �x′

1)ψ(�x′
1)

as if no S2 existed. It follows that in this case both rules for objects and rules for
subobjects lead to the same results.

However, ‘observables’ that are usually associated with S1 are not D-local. For
example, the position operator violates the condition by large margin, as seen above.
In fact, the above analysis shows that such a ‘position’ is not measurable, be it repre-
sented by �x1δ(�x1 − �x′

1) or by �x1δ(�x1 − �x′
1) + �x2δ(�x2 − �x′

2). Moreover, such an ‘ob-
servable’ controls position of the system in the whole infinite space. This is utterly
different from observables that can be registered in a human laboratory. Nevertheless,
one can modify any observable by a map called 	D so that it becomes D-local and
has the same averages in states with supports in D as the original observable had, see
Appendix A.

It seems, however, that a similar problem exists even if particle 2 is not remote: it
can be prepared by a colleague on a neighbouring table in the same laboratory. Still,
the experience shows that measurements done on particle 1 on the first table are not
disturbed by the activity on the second table. Hence, the idea of cluster separability
must work in the same way for a less remote case, too.

But now the extent of the whole problem comes to light. For simple microsystems,
there are very many systems of the same type everywhere, at least according to our
realist interpretation of quantum mechanics. Clearly, one could neglect the entangle-
ment of a single microsystem S with all microsystems of the same type, if S had a
non-trivial separation status in the following sense:
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Definition 4 Let D be a domain and system S be prepared in a state with a D-
local state operator T. Let the probability to register value of observable E(X) in set
X be tr[TE(X)] for any D-local observable E(X) of S . Then, domain D is called
separation status of S .

Here, T is a D-local state operator and E(X) a D-local observable in the sense of
Appendix A and the condition means that the registration of E(X) is not disturbed by
any state different from T. We can then view such microsystems as physical objects.

For example, a microsystem that is alone in the Universe has separation status
D = R

3. This is a form of the assumption of isolated system. Measurable observables
of such a system are the standard ones. The same microsystem in a domain D but
which is surrounded by matter containing a lot of microsystems of the same type
such that supports of their states do not intersect D has separation status D and its
measurable observables are the D-local ones. A trivial case of separation status for a
microsystem is if the only available modus of description for it is that of a subobject.
This has separation status D = ∅ and no observables of its own.

To formulate the idea of separation status mathematically, we allow an exception
to the rule for composition of identical systems. Let system S be prepared in the sepa-
ration status D and let S ′ be a family of N systems of the same type as S in a domain
D′, D ∩D′ = ∅. Then the two systems S and S ′ are to be composed according to the
rule for composition of systems of different type. For example, let the wave function
of S be ψ(�x) and that of S ′ be �(�x1, . . . , �xN) that is symmetric or anti-symmetric in
its N arguments according to the type. Then the wave function of composite system
S + S ′ of N + 1 subsystems of the same type must be written as

ψ(�x)�(�x1, . . . , �xN). (15)

Observe that wave function (15) is not (anti-)symmetric in all N + 1 arguments! This
is at variance with the formal prescription dealing with families of identical systems.
According to this prescription, the wave function had to be

[
ψ(�x)�(�x1, . . . , �xN)

]
s,a

, (16)

where the symbol [·]s,a means symmetrisation or anti-symmetrisations over all wave-
function arguments contained inside. This modification of standard quantum mechan-
ics is essential for our theory of measurement to work. Now, it also ought to be clear
why we do not employ Fock-space method to deal with identical systems: it automat-
ically (anti-)symmetrises over all systems of the same type.

The standard version of quantum mechanics as well as our interpretation [12,
13] of it can be understood as a theory of systems with a fixed status. Let us call
these theories fixed status quantum mechanics (FSQM). They deal with individual
microsystems according to one set of rules and with composite systems containing
many particles of the same type according to another set of rules. It neglects the ob-
vious relations between the two that make such an approach in principle inconsistent.
However, the method seems to work and the justification why it approximately works
is the cluster separability. It follows that FSQM has limits and that the limits have to
do with the cases when separation status of system S changes. The main idea of the
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present paper is that there is certain freedom in choosing the state of S that results
from a change of status (see Sect. 5).

The simplest example of separation status change is as follows. Suppose that wave
function (15) is evolved further by the some first-quantised Hamiltonian according to
prescriptions of standard quantum mechanics so that the support of wave function
ψ(�x) changes from D to D′ (i.e., probability to find system S outside D′ is then neg-
ligible) while �(�x1, . . . , �xN) remains in D′. Thus, the separation status of S becomes
∅ and S itself becomes a subobject. One possibility for the resulting state will now be
described by (16), where the wave functions are replaced by their evolved versions.
Observe that the change from state (15) to (16) is not unitary. This is in agreement
with the fact that the set of observables measurable on S was radically reduced.

Let us close this section by a brief remark on macroscopic systems. In general,
a macroscopic system A is a composite quantum system with very many different
microsystem constituents. One can subdivide these microsystems into type classes. If
we apply the basic rules of observable construction for systems of identical microsys-
tems, then e.g. the position and momentum of any individual microsystem are not
observables of A. However, depending on how large the considered microsystem is
and on the supports of all relevant states, some constituent microsystems can be con-
sidered as approximately separated. In general, to construct measurable observables
for A is a non-trivial problem. For instance, eigenvalues of energy are not measurable
(the spectrum of any macroscopic system is too dense for that). Instead, the average
value of energy with some variance is measurable, etc., see Ref. [13]. Or, X-rays can
be scattered by a crystal and so relative positions of its nuclei can be recognised. But
rather than a position of an individual nucleus it is a space dependence of the average
nuclear density due to all nuclei that is measured by the scattering.

5 Gemenge Structure of Final Detector States

Section 3 motivated the idea that the reading of a registration apparatus for microsys-
tems is in fact an electronic signal from a detector. This gives us much clearer notion
of registration apparatus. The main idea of Sect. 4 is that FSQM description of mi-
crosystems has its limits. This consequence of basic assumptions of standard quantum
mechanics about indistinguishable microsystems leads to a significant modification
of quantum theory of measurement. The necessary changes are:

1. Each preparation of microsystem S must separate the microsystem. Prepared state
T must be D-local in a suitable domain D.

2. Microsystem S can then be manipulated and controlled by devices within D such
as electric and magnetic fields, matter shields, detectors, etc.

3. Let macrosystem A such as a blocking shield, a scattering target or a detector that
contains microsystems indistinguishable from S lie in D. Corrections to FSQM
description of the behaviour of the composed system S + A due to a possible
separation status change of S must be carefully chosen.

The usual method of FSQM is to specify initial states of both S and A before their
interaction, choose some appropriate interaction Hamiltonian and calculate the corre-
sponding unitary evolution of the composed system S + A ignoring the problem with
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separation status change. As shown in Sect. 2, the results are wrong for registration
apparatuses. We shall now try to choose some corrections.

Let S be the registered microsystem and A be an array of N ideal monoatomic-gas
ionisation detectors similar to that of Sect. 3. Let index k enumerate the detectors and
let each detector be treated as a system of identical atoms. Let each atom be modelled
by a particle with mass μ, spin zero and a further degree of freedom, ionisation, with
two values, non-ionised and ionised. We simplify the model further by assuming that
the ionisation and translation degrees of freedom can be separated from each other
in such a way that they define two different formal subsystems, Aion and Atra of the
whole real macroscopic system A. Let χkn be the state describing n ionised atoms in
kth detector. The states

∏

k

⊗χkn(k)

for all n(k)’s form a basis of the Hilbert space of Aion, where n(k) is a map of
{1, . . . ,N} into non-negative integers. Let us assume that the initial state of Aion
is

ψ =
∏

k

⊗χk0,

the perfectly non-ionised state. We can further assume that the initial state Ttra of Atra
is close to maximum entropy one with sufficiently low temperature so that ionisations
due to atomic collisions have a very low probability.

The measurement coupling is a coupling between S and the ionisation degree of
freedom of each atom in the sensitive matter of the whole array. That is, S interacts
directly only with Aion. In a single detector, after the ionisation of the first atom, all
subsequent ionisations lie along a ray track inside the same detector. An explanation
of the fact that e.g. a spherical wave can produce a straight track is given in Ref.
[24], where it is shown that the position of the track head, the first ionisation of
the track, determines the track. This can be considered as a necessary property of
every measurement coupling that is possible in the case considered here. Let the
measurement coupling be that of the Beltrametti-Cassinelli-Lahti model, satisfying
(1), where

ψk =
(

k−1∏

j=1

⊗χj0

)

⊗
(

∑

n

anχkn

)

⊗
(

N∏

j=k+1

⊗χj0

)

and an are coefficients independent of k satisfying
∑

n |an|2 = 1. This is again a sim-
plifying assumption: each S creates always the same ionisation state in each detector.

In Sect. 2, states ψk were called ‘end states’ of A and they were eigenstates of
observable A called ‘pointer observable’. Here, we prefer ψk to be called trigger
states because there is a further evolution of A independent of S that leads from ψk to
the concentration of charges at the electrodes, and an electronic signal, of kth detector.
This is due to a coupling between Aion and Atra mediated by the electrostatic field of
the electrodes: ionised atoms move in a different way than the non-ionised ones. This
motion leads to atom collisions and further ionisation in a complicated irreversible
process. Only then, the true end states with true pointer values are achieved. There is
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no pointer observable, the pointer values being some averages with some variances,
in agreement with the expectation of Refs. [12, 13]. However, what is important for
us happens already at the trigger stage and we can ignore the evolution from a trigger
state to a detector signal.

From the requirement that the measurement yields a definite result, an important
statement follows (cf. Sect. 2):

Theorem 3 A measurement coupling of a true registration must be such that the end
states ϕkl of S are orthonormal,

〈ϕkl |ϕmn〉 = δkmδln. (17)

The unitary evolution defined by the measurement coupling yields a trigger state of
the whole system S + Aion given by (2). Then, the trigger state of Aion, obtained
from (4) and (17), is given by (5).

According to Theorem 2, state (5) of Aion has not the gemenge structure given by
the right-hand side of (5) because of the entanglement with S due to state (2). The
reason is that state (2) contains much more correlations between observables of S and
Aion than just correlations between the states �k and ψk . To measure any of these
correlations, we would always need some observables of S that do not commute with
O (see Appendix B).

However, the assumption that the trigger state Aion is (2) seems to be an illusion.
Microsystem S is somewhere inside A at this stage and has become indistinguish-
able from other microsystems of the same type within A. There is always a lot of
them, either because they are present in the detectors before the registration started or
because the detector becomes quickly polluted by them afterwards. Thus, the separa-
tion status of the system S has changed from an object to a subobject and with it also
the separation status of the whole composite system S + A has. The applications of
FSQM to two systems of different separation status is different. In our case, system
S + A before the interaction is a composite one and each of the subsystems is an
object having its states and observables. During and after the interaction, however, S
ceases to be an object, becomes a part of A and looses all of its observables except
of O. This is a deeper change than just a change of state. Hence, the existence of
most correlations that are the content of state (2) is lost. The point is not that some
observables are difficult to measure but rather that these observables do not exist at
all. The only correlations that can remain are those between the trigger states ψk of
Aion and �k of the microsystem. They are the content of the state

∑

k

|ck|2|�k〉〈�k| ⊗ |ψk〉〈ψk|.

This motivates the following assumption:

Rule 2 Let a microsystem S be detected by a detector A and the measurement cou-
pling satisfy (17) so that the corresponding unitary evolution leads to the state (2)
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with S inside A. Then, instead of (2), the true state of S + Aion is
(∑

k

)

gs
|ck|2|�k〉〈�k| ⊗ |ψk〉〈ψk|. (18)

It then follows from Theorem 2 that the trigger state of Aion is

trS [U(T ⊗ TA)U†] =
(∑

j

)

gs
pO

φ (oj )|ψj 〉〈ψj |. (19)

The content of Rule 2 is that only the correlations between the states ψk of Aion
and �k of the microsystem survive and all other correlations between Aion and S are
erased during the change of separation status of S + A. What survives and what is
erased is uniquely determined by the Beltrametti-Cassinelli-Lahti model. In partic-
ular, the probability reproducibility condition determines states ϕkl from the initial
state ψ of Aion uniquely and the initial state φ of S determines states �k uniquely.
Thus, the additional evolution from state (2) to state (18) is non-unitary but still de-
terministic. Rule 2 is a new basic assumption which has to be added to quantum
mechanics. To choose such an assumption, we have to look at observations and ex-
periments. Rule 2 is in an agreement with what is observed.

A correct interpretation of Rule 2 distinguishes two cases. If the detectors are
absorbing, then states �k in (18) ought to be (anti-)symmetrised with states of other
systems indistinguishable from S within the k-th detector as in (16). The expression
|�k〉〈�k| in it just symbolises the fact that system S has been lost in the k-th detector.
If they are non-absorbing, then state (18) contains states ψk leading to detector signals
on the one hand and describes the release of S in state �k that is correlated with
detector signals on the other. Each release is understood as an instance of preparation
and the whole procedure is a random mixture of these single preparations. In both
cases, the end state of Aion is (19).

One can wonder whether a more detailed quantum mechanical model of what
happens during a change of separation status can be constructed. The reason why this
cannot be done within FSQM is that FSQM is not applicable to changes of separation
status. Hence, a new law added to FSQM is needed.

As an example of a system of non-absorbing detectors, the MWPC telescope for
particle tracking can be mentioned [18]. It is a stack of the so-called multiwire pro-
portional chambers (MWPC), which is arranged so that a particle runs through excit-
ing each of them. The resulting system of electronic signals contains the information
about the particle track.

A registration by a non-absorbing detector is similar to a scattering of a microsys-
tem by a macroscopic target. First, let us consider no-entanglement processes such
as the scattering of electrons on a crystal of graphite with an interference pattern as a
result [25] or the splitting of a laser beam by a down-conversion process in a crystal
of KNbO3 (see, e.g., Ref. [26]). No-entanglement processes can be described by the
following model. Let the initial state of the target A be T and that of the microsys-
tem be φ. We assume that the end state of the target is T′ and the end-state of the
microsystem is ϕ and that we have a unitary evolution:

|φ〉〈φ| ⊗ T �→ |ϕ〉〈ϕ| ⊗ T′.
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There is no entanglement of the two systems due to the interaction and there is no
necessity to divide the resulting correlations between S and A in what survives and
what is erased. The end state is already of the form (18) and it has a trivial gemenge
structure. In this way, our corrections of FSQM become trivial in this case.

A more complicated case is an entanglement scattering. Let microsystem S in
initial state φ be scattered by a macrosystem A in initial state T and let this lead
to excitation of different microscopic subsystems S ′

k of A. Scattering of neutrons
on spin waves in ferromagnets, transmutation of nuclei inside A or, for that matter,
ionising an atom in a gas detector are examples. We have, therefore, a more general
situation than that in which Rule 2 gives a unique result. It seems that the change of
status must lead to some correlations between S and A surviving and some being
erased. However, in this situation it must yet be investigated which is which. Clearly,
the definitive general rule must depend on the two interacting systems and on the in-
teraction Hamiltonian. More theoretical and experimental work is necessary to guess
the general rule.

6 Conclusion

The present paper proposes some ideas based on cluster separability with the aim to
solve the objectification problem of quantum measurement. Its main purpose is to
show how the ideas work by studying well-understood, restricted class of physical
conditions in which the following assumptions are a good approximation: (a) non-
relativistic quantum mechanics, (b) measurement performed directly on microsys-
tems, (c) Beltrametti-Cassinelli-Lahti model of measurement and (d) pointer readings
being signals from detectors.

Reference [10] defines and analyses the problem of objectification and shows its
insolubility: no-go theorems such as Theorem 6.2.1, p. 76. One of the premises of
all theorems of this kind is that standard quantum mechanics (without any further
assumptions such as that of collapse of the wave function) is applicable to preparation
and registration processes. The present paper gives a physical justification of why
this premise is not valid: during preparation and registration, the system changes its
separation status and standard quantum mechanics 1) is not applicable to, and 2) does
not contain any rules for, such kind of evolution. Thus, new rules that govern changes
of separation status can be added without any contradiction with standard quantum
mechanics or proofs of no-go theorems. Rule 2 is an example of such a new rule.
Thus, the no-go theorem of Sect. 2 is avoided.

An important result of the present paper together with Refs. [12, 13] is a strongly
improved understanding of preparation procedure. First, any preparation gives the
prepared system its objective quantum properties such as states, gemenge structures,
averages and variances of observables etc. so that it is justified to speak of a phys-
ical object. This is what we have called quantum object. Second, in certain sense,
a preparation must separate a microsystem from the set of identical microsystems,
at least approximately. Only then, it can be viewed as an individual system and the
standard notion of observable becomes applicable to it. This is justified by the idea of
cluster-separability. Third, a preparation must isolate the microsystem so that it can
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be individually manipulated by e.g. external fields or mater shields and registered by
detectors.

One trend in the post-Everett theory of quantum measurement is to avoid the as-
sumption of collapse of the wave function during registrations. In a sense, the present
paper is heading in the opposite direction. We even replace the collapse by a more
radical transformation, a change in microsystem description including state spaces
and observable algebras. This change is, in plain words, a kind of loss of a registered
object during its registration. However, our result for non-absorbing detectors and the
old idea by von Neumann have some features in common.

After having shown that our ideas work under the simplified conditions listed
above we can start thinking about extending the method to more general conditions.
There is a lot of work to be done yet. First, we must turn to other models of measure-
ment, for example to different (non-ideal) kinds of detectors or to the more realistic
premeasurement models within the non-relativistic quantum mechanics. The main
point is again that the state resulting from the evolution contains information about
properties of the composite system S + A that could be measured only if more ob-
servables than the registered one of S existed. Thus, a change of this illusory state
analogous to that given by Rule 2 could be justified. In such a way, all no-go theorems
could be defused. The exact division line between correlations that survive and those
that are erased during the registrations and other processes might again be determined
by a careful analysis of observational facts.

Next, relativistic corrections have been neglected so that all notions and rules of
non-relativistic quantum mechanics could be used. An extension of the present results
to relativistic fields seems to be a realistic project because cluster separability is valid
in this field.
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Appendix A: Construction of D-local Observables

For the construction, we need more mathematics. Let Lr (H) denote the set of all
self-adjoint operators on the Hilbert space H that are bounded in the norm

‖A‖ = sup
‖ψ‖=1

‖Aψ‖. (20)

An operator A ∈ Lr (H) is positive, A ≥ 0, where 0 is the null operator, if

〈φ|Aφ〉 ≥ 0

for all vectors φ ∈ H. The relation A ≥ B defined by

A − B ≥ 0

is an ordering on this space. With this (partial) order relation, Lr (H) is an ordered
Banach space.
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Definition 5 Let F be the Boolean lattice of all Borel subsets of R
n. A positive

operator valued (POV) measure

E : F �→ Lr (H)

is defined by the properties

1. positivity: E(X) ≥ 0 for all X ∈ F ,

2. σ -additivity: if {Xk} is a countable collection of disjoint sets in F then

E(∪kXk) =
∑

k

E(Xk),

where the series converges in weak operator topology, i.e., averages in any state
converge to an average in the state.

3. normalisation:

E(Rn) = 1,

where 1 is the identity operator on H.

The number n is called dimension of E. The operators E(X) for X ∈ F are called
effects.

We denote by Lr (H)+≤1 the set of all effects.

Theorem 4 Lr (H)+≤1 is the set of elements of Lr (H) satisfying the inequality

0 ≤ E(X) ≤ I. (21)

For the proof, see Ref. [1, 2].
A special case of POV measure is projection valued measure (PV measure). All

effects of a PV measure are projections onto subspaces of H. The spectral measure
of a s.a. operator is a PV measure, hence POV measure is a generalisation of a s.a.
operator. More about POV measures as well as the motivation for viewing them a
quantum-mechanical observables, see Refs. [1, 2, 10, 15].

Let us denote by HD the Hilbert space obtained by completion of C∞-functions
with support in D with respect to the scalar product of H. HD is a closed linear
subspace of H. Let PD be the projection from H onto HD .

Definition 6 Let

	D : Lr (H) �→ Lr (H)

be defined by

	D(A) = PDAPD.

Mapping 	D is called D-localization.



Found Phys (2011) 41: 640–666 663

Clearly, D-localisation of any operator in Lr (H) is D-local. Everything that is
measurable within D can be described by D-local observables. Of course, the D-
localisation is not a unitary map. For example, it does not preserve operator norm,

‖	D(A)‖ ≤ ‖A‖.
The operators and their D-localisations are considered as acting on H. D-local

operators leave HD invariant and define, therefore, also operators on Hilbert space
HD .

We can use these facts in a construction of D-local POV measure on HD from any
observable E on H by D-localising the effects E(X). The normalisation condition
becomes:

	D(E(Rn)) = PD1PD = 1D,

where 1D is the identity operator on HD . Of course, D-localisation of a projection
will not be a projection in general and so a D-localisation of a PV measure need not
be a PV measure. Let us call this construction D-localisation of POV measures. All
D-local POV measures commute with spectral projections of PV measure E�Q(X), if
X ∩ D = ∅. E�Q(X) is the spectral measure of the position operator �Q. Thus, the re-
striction to D-local observables may be formally understood as superselection rules.

Everything can be easily extended from vector to general states; the state operators
must just be D-local. If the map 	D is involved in their construction it must be
followed by a suitable normalisation.

Appendix B: Complete Set of Correlations in a Vector State of a Composite
System

Consider a composite system with constituents S and S ′ in vector state

� =
∑

k

ckφk ⊗ φ′
k, (22)

{φk} being a basis of HS , {φ′
k} that of HS ′ and ck satisfying

∑

k

|ck|2 = 1.

In fact, any vector state of S + S ′ can be written in the form (22), which is called
Schmidt decomposition (see, e.g., [15], p. 123).

Let O be an observable of S and O′ of S ′ and let us introduce the following ab-
breviations:

〈O〉� = 〈�|O ⊗ 1|�〉,
〈O′〉� = 〈�|1 ⊗ O′|�〉,

〈OO′〉� = 〈�|O ⊗ O′|�〉,



664 Found Phys (2011) 41: 640–666

��O =
√

〈O2〉� − 〈O〉2
�,

��O′ =
√

〈O′2〉� − 〈O′〉2
�.

The normalised correlation of O and O′ in � is defined by

ρ(O,O′,�) = 〈OO′〉� − 〈O〉�〈O′〉�
��O��O′ . (23)

The normalised correlation always satisfies

−1 � ρ(O,O′,�) � 1

because of Schwarz’ inequality. If ρ(O,O′,�) = 0 observables O and O′ are uncor-
related, if ρ(O,O′,�) = ±1 they are strongly correlated/anti-correlated.

Let us first apply these formulae to projections,

Pk = |φk〉〈φk|, P′
k = |φ′

k〉〈φ′
k|.

Simple calculations yield

〈Pk〉� = 〈P′
k〉� = |ck|2,

��Pk = ��P′
k = |ck|

√

1 − |ck|2,
〈PkP′

l〉� = |ck|2δkl .

Thus,

ρ(Pk,P′
k,�) = 1.

It follows that Pk and P′
k are strongly correlated in �.

Next, consider bounded, s.a. operators

Pαkl = eiα|φk〉〈φl | + e−iα|φl〉〈φk|,
P′

αkl = eiα|φ′
k〉〈φ′

l | + e−iα|φ′
l〉〈φ′

k|
for k �= l. We calculate:

〈Pαkl〉� = 〈P′
αkl〉� = 0,

��Pαkl = ��P′
αkl =

√

|ck|2 + |cl |2,
〈PαklP

′
βkl〉� = ei(α+β)c∗

kcl + e−i(α+β)c∗
l ck.

Thus,

ρ(Pαkl,P′
βkl,�) = ei(α+β)c∗

kcl + e−i(α+β)c∗
l ck

|ck|2 + |cl |2 .
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It follows that correlations of the observables Pαkl and P′
βkl in state � contain com-

plete information about all coefficient ck except for their common phase and so de-
termine state �. It is sufficient to use just two choices of α and β:

1. α + β = 0,
2. α + β = π/2.

Next, consider state

T =
∑

k

|ck|2
(|φk〉〈φk|

) ⊗ (|φ′
k〉〈φ′

k|
)
.

For the projections Pk and P′
k , all averages in T equal to those in � and we have again

ρ(Pk,P′
k,T) = 1.

However, for the observables Pαkl and P′
αkl , we now obtain

〈Pαkl〉T = 〈P′
αkl〉T = 0,

�TPαkl = �TP′
αkl =

√

|ck|2 + |cl |2,
〈PαklP

′
βkl〉T = 0.

Hence,

ρ(Pαkl,P′
βkl,T) = 0.

Let us summarise: Correlations between Pαkl and P′
βkl determine state � uniquely.

The change from � to T preserves the correlations between Pk and P′
k but erases all

correlations between Pαkl and P′
βkl .
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