1,350 research outputs found

    Extreme Fire as a Management Tool to Combat Regime Shifts in the Range of the Endangered American Burying Beetle

    Get PDF
    This study is focused on the population of federally-endangered American burying beetles in south-central Nebraska. It is focused on changes in land cover over time and at several levels of spatial scale, and how management efforts are impacting both the beetle and a changing landscape. Our findings are applicable to a large portion of the Great Plains, which is undergoing the same shift from grassland to woodland, and to areas where the beetle is still found

    Extreme Fire as a Management Tool to Combat Regime Shifts in the Range of the Endangered American Burying Beetle

    Get PDF
    This study is focused on the population of federally-endangered American burying beetles in south-central Nebraska. It is focused on changes in land cover over time and at several levels of spatial scale, and how management efforts are impacting both the beetle and a changing landscape. Our findings are applicable to a large portion of the Great Plains, which is undergoing the same shift from grassland to woodland, and to areas where the beetle is still found

    Sr-Isotope Record of Quaternary Marine Terraces on the California Coast and off Hawaii

    Get PDF
    Strontium-isotopic ratios of dated corals have been obtained from submerged reefs formed during Quaternary glacial periods off the Hawaiian islands. These data, combined with data from deep-sea sediments, tightly constrain the secular variation of marine 87Sr/86Sr for the past 800,000 yr. Although long-term trends are apparent, no significant (\u3e0.02‰), rapid (\u3c100,000 yr) excursions in 87Sr/86Sr were resolved nor did we observe any samples with 87Sr/86Sr greater than that of modern seawater. Strontium in mollusks from elevated marine terraces formed during interglacial periods on the southern California coast show resolvable and consistent variations in 87Sr/86Sr which, when compared to the trend of Quaternary marine 87Sr/86Sr, can be used to infer uplift rates and define approximate ages for the higher terraces. The Sr-isotope age estimates indicate that uplift rates vary among crustal blocks and were not necessarily constant with time. No contrast in Sr-isotopic ratios between similar-age Hawaiian and California fossils was observed, confirming that any change in marine 87Sr/86Sr from glacial to interglacial periods must be small. A realistic appraisal of the potential of Sr-isotope stratigraphy for chronometric applications i

    The Effects of Dental Hygiene Instrument Handles on Muscle Activity Production

    Get PDF
    Purpose The objective of this study was to compare the effects of ten commercially available instrument handle designs’ mass and diameter on forearm muscle activity during a simulated periodontal scaling experience. Methods A convenience sample of 25 registered dental hygienists were recruited for this IRB-approved study. Ten commercially available instruments were categorized into four groups based on their masses and diameters: large diameter/light mass, small diameter/light mass, large diameter/heavy mass, and small diameter/heavy mass. Participants were randomized to four instruments with one from each group. Participants scaled with each instrument in a simulated oral environment while muscle activity was collected using surface electromyography. Muscle activity was compared among the four instrument group types. Results Muscle activity of the flexor digitorum superficialis was not significantly influenced by instrument mass (p=0.60) or diameter (p=0.15). Flexor pollicis longus muscle activity was not significantly influenced by instrument mass (p=0.81); diameter had a significant effect (p=0.001) with smaller diameter instruments producing more muscle activity. For the extensor digitorum communis and extensor carpi radialis brevis, instrument mass did not significantly affect muscle activity (p=0.64, p=0.43), while diameter narrowly failed to reach significance for both muscles (p=0.08, p=0.08); muscle activity for both muscles increased with smaller diameter instruments. Conclusion Results from this study indicate instrument diameter is more influential than mass on muscle activity generation; small diameter instruments increased muscle activity generation when compared to large diameter instruments. Future research in real-world settings is needed to determine the clinical impact of these findings

    Robust Single-Shot Spin Measurement with 99.5% Fidelity in a Quantum Dot Array

    Full text link
    We demonstrate a new method for projective single-shot measurement of two electron spin states (singlet versus triplet) in an array of gate-defined lateral quantum dots in GaAs. The measurement has very high fidelity and is robust with respect to electric and magnetic fluctuations in the environment. It exploits a long-lived metastable charge state, which increases both the contrast and the duration of the charge signal distinguishing the two measurement outcomes. This method allows us to evaluate the charge measurement error and the spin-to-charge conversion error separately. We specify conditions under which this method can be used, and project its general applicability to scalable quantum dot arrays in GaAs or silicon.Comment: 13 pages, 3 figure

    Quantum nondemolition measurement of an electron spin qubit

    Full text link
    Measurement of quantum systems inevitably involves disturbance in various forms. Within the limits imposed by quantum mechanics, however, one can design an "ideal" projective measurement that does not introduce a back action on the measured observable, known as a quantum nondemolition (QND) measurement. Here we demonstrate an all-electrical QND measurement of a single electron spin in a gate-defined quantum dot via an exchange-coupled ancilla qubit. The ancilla qubit, encoded in the singlet-triplet two-electron subspace, is entangled with the single spin and subsequently read out in a single shot projective measurement at a rate two orders of magnitude faster than the spin relaxation. The QND nature of the measurement protocol is evidenced by observing a monotonic increase of the readout fidelity over one hundred repetitive measurements against arbitrary input states. We extract information from the measurement record using the method of optimal inference, which is tolerant to the presence of the relaxation and dephasing. The QND measurement allows us to observe spontaneous spin flips (quantum jumps) in an isolated system with small disturbance. Combined with the high-fidelity control of spin qubits, these results pave the way for various measurement-based quantum state manipulations including quantum error correction protocols.Comment: This is a pre-print of an article published in Nature Nanotechnology. The final authenticated version is available online at: https://doi.org/10.1038/s41565-019-0426-

    Design and functional analysis of heterobifunctional multivalent phage capsid inhibitors blocking the entry of influenza virus

    Get PDF
    Multiple conjugation of virus-binding ligands to multivalent carriers is a prominent strategy to construct highly affine virus binders for the inhibition of viral entry into host cells. In a previous study, we introduced rationally designed sialic acid conjugates of bacteriophages (Q beta) that match the triangular binding site geometry on hemagglutinin spike proteins of influenza A virions, resulting in effective infection inhibition in vitro and in vivo. In this work, we demonstrate that even partially sialylated Q beta conjugates retain the inhibitory effect despite reduced activity. These observations not only support the importance of trivalent binding events in preserving high affinity, as supported by computational modeling, but also allow us to construct heterobifunctional modalities. Capsids carrying two different sialic acid ligand-linker structures showed higher viral inhibition than their monofunctional counterparts. Furthermore, capsids carrying a fluorescent dye in addition to sialic acid ligands were used to track their interaction with cells. These findings support exploring broader applications as multivalent inhibitors in the future

    Suppression of Surface-Related Loss in a Gated Semiconductor Microcavity

    Get PDF
    We present a surface-passivation method that reduces surface-related losses by almost 2 orders of magnitude in a highly miniaturized GaAs open microcavity. The microcavity consists of a curved dielectric distributed Bragg reflector with radius of approximately 10 ?m paired with a GaAs-based heterostructure. The heterostructure consists of a semiconductor distributed Bragg reflector followed by an n-i-p diode with a layer of quantum dots in the intrinsic region. Free-carrier absorption in the highly -n-doped and highly -p-doped layers is minimized by our positioning them close to a node of the vacuum electromagnetic field. The surface, however, resides at an antinode of the vacuum field and results in significant loss. These losses are much reduced by surface passivation. The strong dependence on wavelength implies that the main effect of the surface passivation is to eliminate the surface electric field, thereby quenching below-band-gap absorption via a Franz-Keldysh-like effect. An additional benefit is that the surface passivation reduces scattering at the GaAs surface. These results are important in other nanophotonic devices that rely on a GaAs-vacuum interface to confine the electromagnetic field

    Design and Functional Analysis of Heterobifunctional Multivalent Phage Capsid Inhibitors Blocking the Entry of Influenza Virus

    Get PDF
    Multiple conjugation of virus-binding ligands to multivalent carriers is a prominent strategy to construct highly affine virus binders for the inhibition of viral entry into host cells. In a previous study, we introduced rationally designed sialic acid conjugates of bacteriophages (QÎČ) that match the triangular binding site geometry on hemagglutinin spike proteins of influenza A virions, resulting in effective infection inhibition in vitro and in vivo. In this work, we demonstrate that even partially sialylated QÎČ conjugates retain the inhibitory effect despite reduced activity. These observations not only support the importance of trivalent binding events in preserving high affinity, as supported by computational modeling, but also allow us to construct heterobifunctional modalities. Capsids carrying two different sialic acid ligand–linker structures showed higher viral inhibition than their monofunctional counterparts. Furthermore, capsids carrying a fluorescent dye in addition to sialic acid ligands were used to track their interaction with cells. These findings support exploring broader applications as multivalent inhibitors in the future

    Distributions of gaps and end-to-end correlations in random transverse-field Ising spin chains

    Full text link
    A previously introduced real space renormalization-group treatment of the random transverse-field Ising spin chain is extended to provide detailed information on the distribution of the energy gap and the end-to-end correlation function for long chains with free boundary conditions. Numerical data, using the mapping of the problem to free fermions, are found to be in good agreement with the analytic finite size scaling predictions.Comment: 12 pages revtex, 10 figures, submitted to Phys. Rev.
    • 

    corecore