11 research outputs found

    Numerical Investigation of Distributed Speed Feedback Control of Turbulent Boundary Layer Excitation Curved Plates Radiation Noise

    No full text
    The control of decentralized velocity feedback on curved aircraft plates under turbulent boundary layer excitations is numerically investigated in this paper. Sixteen active control units are set on the plate to reduce the vibration and sound radiation of the plate. The computational results from the two methods are compared to verify the accuracy of the numerical model. The plate kinetic energy and the radiated sound power under turbulent boundary layer and control unit excitations are analyzed. The influences of control unit distribution, plate thickness and curvature on radiated sound are discussed. Unlike a flat plate, the control of the lower-order high radiation modes of a curved plate under TBL excitations is critical since these modes predominate the sound radiations. The control of these modes, however, is sensitive to the ratio of the stiffness associated with the membrane tensions to the stiffness associated with the bending forces. This ratio implies that the plate curvature and the thickness play an important role in the control effect. When the plate is thinner and the radius is smaller, the control is less effective

    Determination of Frequency-Dependent Shear Modulus of Viscoelastic Layer via a Constrained Sandwich Beam

    No full text
    Viscoelastic material can significantly reduce the vibration energy and radiated noise of a structure, so it is widely used in lightweight sandwich structures. The accurate and efficient determination of the frequency-dependent complex modulus of viscoelastic material is the basis for the correct analysis of the vibro-acoustic behavior of sandwich structures. Based on the behavior of a sandwich beam whose core is a viscoelastic layer, a combined theoretical and experimental study is proposed to characterize the properties of the viscoelastic layer constituting the core. In this method, the viscoelastic layer is bonded between two constraining layers. Then, a genetic algorithm is used to fit the analytical solution of the frequency¬ response function of the free–free constrained beam to the measured result, and then the frequency-dependent complex modulus is estimated for the viscoelastic layer. Moreover, by varying the length of the beams, it is possible to characterize the frequency-dependent complex modulus of the viscoelastic material over a wide frequency range. Finally, the characterized frequency-dependent complex modulus is imported into a finite element model to compute the complex natural frequencies of a sandwich beam, and a comparison of the simulated and measured results displays that the errors in the real parts are within 2.33% and the errors in the imaginary parts are within 3.31%. It is confirmed that the proposed method is feasible, accurate, and reliable. This provides essential technical support for improving the acoustic vibration characteristics of sandwich panels by introducing viscoelastic materials
    corecore