384 research outputs found

    Using graphics and expert system technologies to support satellite monitoring at the NASA Goddard Space Flight Center

    Get PDF
    At NASA's Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analysts Assistant (GenSAA), was developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. This paper describes GenSAA's capabilities and how it is supporting monitoring functions of current and future NASA missions for a variety of satellite monitoring applications ranging from subsystem health and safety to spacecraft attitude. Finally, this paper addresses efforts to generalize GenSAA's data interface for more widespread usage throughout the space and commercial industry

    Cache as ca$h can

    Get PDF
    In this contribution several caching strategies for the World Wide Weba re studied. Special attention is paid to the so-called proxy placement, i.e. placing of caches on carefully selected nodes in the network near to the end users

    Rigidity percolation in a field

    Full text link
    Rigidity Percolation with g degrees of freedom per site is analyzed on randomly diluted Erdos-Renyi graphs with average connectivity gamma, in the presence of a field h. In the (gamma,h) plane, the rigid and flexible phases are separated by a line of first-order transitions whose location is determined exactly. This line ends at a critical point with classical critical exponents. Analytic expressions are given for the densities n_f of uncanceled degrees of freedom and gamma_r of redundant bonds. Upon crossing the coexistence line, n_f and gamma_r are continuous, although their first derivatives are discontinuous. We extend, for the case of nonzero field, a recently proposed hypothesis, namely that the density of uncanceled degrees of freedom is a ``free energy'' for Rigidity Percolation. Analytic expressions are obtained for the energy, entropy, and specific heat. Some analogies with a liquid-vapor transition are discussed. Particularizing to zero field, we find that the existence of a (g+1)-core is a necessary condition for rigidity percolation with g degrees of freedom. At the transition point gamma_c, Maxwell counting of degrees of freedom is exact on the rigid cluster and on the (g+1)-rigid-core, i.e. the average coordination of these subgraphs is exactly 2g, although gamma_r, the average coordination of the whole system, is smaller than 2g. gamma_c is found to converge to 2g for large g, i.e. in this limit Maxwell counting is exact globally as well. This paper is dedicated to Dietrich Stauffer, on the occasion of his 60th birthday.Comment: RevTeX4, psfig, 16 pages. Equation numbering corrected. Minor typos correcte

    Energy Spectra of Elemental Groups of Cosmic Rays: Update on the KASCADE Unfolding Analysis

    Get PDF
    The KASCADE experiment measures extensive air showers induced by cosmic rays in the energy range around the so-called knee. The data of KASCADE have been used in a composition analysis showing the knee at 3-5 PeV to be caused by a steepening in the light-element spectra. Since the applied unfolding analysis depends crucially on simulations of air showers, different high energy hadronic interaction models (QGSJet and SIBYLL) were used. The results have shown a strong dependence of the relative abundance of the individual mass groups on the underlying model. In this update of the analysis we apply the unfolding method with a different low energy interaction model (FLUKA instead of GHEISHA) in the simulations. While the resulting individual mass group spectra do not change significantly, the overall description of the measured data improves by using the FLUKA model. In addition data in a larger range of zenith angle are analysed. The new results are completely consistent, i.e. there is no hint to any severe problem in applying the unfolding analysis method to KASCADE data.Comment: accepted for publication in Astroparticle Physic

    Extinction times in the subcritical stochastic SIS logistic epidemic

    Get PDF
    Many real epidemics of an infectious disease are not straightforwardly super- or sub-critical, and the understanding of epidemic models that exhibit such complexity has been identified as a priority for theoretical work. We provide insights into the near-critical regime by considering the stochastic SIS logistic epidemic, a well-known birth-and-death chain used to model the spread of an epidemic within a population of a given size NN. We study the behaviour of the process as the population size NN tends to infinity. Our results cover the entire subcritical regime, including the "barely subcritical" regime, where the recovery rate exceeds the infection rate by an amount that tends to 0 as NN \to \infty but more slowly than N1/2N^{-1/2}. We derive precise asymptotics for the distribution of the extinction time and the total number of cases throughout the subcritical regime, give a detailed description of the course of the epidemic, and compare to numerical results for a range of parameter values. We hypothesise that features of the course of the epidemic will be seen in a wide class of other epidemic models, and we use real data to provide some tentative and preliminary support for this theory.Comment: Revised; 34 pages; 6 figure
    corecore