25 research outputs found

    Regulation of Synthesis and Roles of Hyaluronan in Peritoneal Dialysis

    Get PDF
    Hyaluronan (HA) is a ubiquitous extracellular matrix glycosaminoglycan composed of repeated disaccharide units of alternating D-glucuronic acid and D-N-acetylglucosamine residues linked via alternating beta-1, 4 and beta-1, 3 glycosidic bonds. HA is synthesized in humans by HA synthase (HAS) enzymes 1, 2, and 3, which are encoded by the corresponding HAS genes. Previous in vitro studies have shown characteristic changes in HAS expression and increased HA synthesis in response to wounding and proinflammatory cytokines in human peritoneal mesothelial cells. In addition, in vivo models and human peritoneal biopsy samples have provided evidence of changes in HA metabolism in the fibrosis that at present accompanies peritoneal dialysis treatment. This review discusses these published observations and how they might contribute to improvement in peritoneal dialysis

    How effective are brief interventions in reducing alcohol consumption::do the setting, practitioner group and content matter? Findings from a systematic review and metaregression analysis

    Get PDF
    Background: While the efficacy and effectiveness of brief interventions for alcohol (ABI) have been demonstrated in primary care, there is weaker evidence in other settings and reviews do not consider differences in content. We conducted a systematic review to measure the effect of ABIs on alcohol consumption and how it differs by the setting, practitioner group and content of intervention. Methods: We searched MEDLINE, EMBASE, PsycINFO; CINAHL, Social Science Citation Index, Cochrane Library and Global Health up to January 2015 for randomised controlled trials that measured effectiveness of ABIs on alcohol consumption. We grouped outcomes into measures of quantity and frequency indices. We used multilevel meta-analysis to estimate pooled effect sizes and tested for the effect of moderators through a multiparameter Wald test. Stratified analysis of a subset of quantity and frequency outcomes was conducted as a sensitivity check. Results: 52 trials were included contributing data on 29 891 individuals. ABIs reduced the quantity of alcohol consumed by 0.15 SDs. While neither the setting nor content appeared to significantly moderate intervention effectiveness, the provider did in some analyses. Interventions delivered by nurses had the most effect in reducing quantity (d=−0.23, 95% CI (−0.33 to −0.13)) but not frequency of alcohol consumption. All content groups had statistically significant mean effects, brief advice was the most effective in reducing quantity consumed (d=−0.20, 95% CI (−0.30 to −0.09)). Effects were maintained in the stratified sensitivity analysis at the first and last assessment time. Conclusions: ABIs play a small but significant role in reducing alcohol consumption. Findings show the positive role of nurses in delivering interventions. The lack of evidence on the impact of content of intervention r

    A urinary microRNA panel that is an early predictive biomarker of delayed graft function following kidney transplant

    Get PDF
    Predicting immediate and subsequent graft function is important in clinical decision-making around kidney transplantation, but is difficult using available approaches. Here we have evaluated urinary microRNAs as biomarkers in this context. Profiling of 377 microRNAs in the first urine passed post-transplantation identified 6 microRNAs, confirmed to be upregulated by RT-qPCR in an expanded cohort (miR-9, -10a, -21, -29a, -221, and -429, n = 33, P < 0.05 for each). Receiver operating characteristic analysis showed Area Under the Curve 0.94 for this panel. To establish whether this early signal was sustained, miR-21 was measured daily for 5 days post-transplant, and was consistently elevated in those developing Delayed Graft Function (n = 165 samples from 33 patients, p < 0.05). The biomarker panel was then evaluated in an independent cohort, sampled at varying times in the first week post-transplantation in a separate transplant center. When considered individually, all miRs in the panel showed a trend to increase or a significant increase in those developing delayed Graft Function (miR-9: P = 0.068, mIR-10a: P = 0.397, miR-21: P = 0.003, miR-29a: P = 0.019, miR-221: P = 0.1, and miR-429: P = 0.013, n = 47) with Area Under the Curve 0.75 for the panel. In conclusion, combined measurement of six microRNAs had predictive value for delayed graft function following kidney transplantation. Introductio

    Detection of urinary microRNA biomarkers using diazo sulfonamide-modified screen printed carbon electrodes

    Get PDF
    This paper describes a straightforward electrochemical method for rapid and robust urinary microRNA (miRNA) quantification using disposable biosensors that can discriminate between urine from diabetic kidney disease (DKD) patients and control subjects. Aberrant miRNA expression has been observed in several major human disorders, and we have identified a urinary miRNA signature for DKD. MiRNAs therefore have considerable promise as disease biomarkers, and techniques to quantify these transcripts from clinical samples have significant clinical and commercial potential. Current RT-qPCR-based methods require technical expertise, and more straightforward methods such as electrochemical detection offer attractive alternatives. We describe a method to detect urinary miRNAs using diazo sulfonamide-modified screen printed carbon electrode-based biosensors that is amenable to parallel analysis. These sensors showed a linear response to buffered miR-21, with a 17 fM limit of detection, and successfully discriminated between urine samples (n = 6) from DKD patients and unaffected control subjects (n = 6) by differential miR-192 detection. Our technique for quantitative miRNA detection in liquid biopsies has potential for development as a platform for non-invasive high-throughput screening and/or to complement existing diagnostic procedures in disorders such as DKD

    miR-141 mediates recovery from acute kidney injury

    Get PDF
    Acute kidney injury (AKI) is a global clinical problem characterised by a sudden decline in renal function and mortality as high as 60%. Current AKI biomarkers have limited ability to classify disease progression and identify underlying pathological mechanisms. Here we hypothesised that alterations in urinary microRNA profiles could predict AKI recovery/nonrecovery after 90 days, and that injury-specific changes would signify microRNA mediators of AKI pathology. Comparison of urinary microRNA profiles from AKI patients with controls detected significant injury-specific increases in miR-21, miR-126 and miR-141 (p < 0.05) and decreases in miR-192 (p < 0.001) and miR-204 (p < 0.05). Expression of miR-141 increased in renal proximal tubular epithelial cells (PTECs) under oxidative stress in vitro and unilateral ischaemic reperfusion injury in vivo. Forced miR-141 expression in the presence of H2O2 increased PTEC death and decreased cell viability. Of nine messenger RNA targets with two or more miR-141 3’-untranslated region binding sites, we confirmed protein tyrosine phosphatase receptor type G (PTPRG) as a direct miR-141 target in PTECs. PTPRG-specific siRNA knockdown under oxidative stress increased PTEC death and decreased cell viability. In conclusion, we detected significant alterations in five urinary microRNAs following AKI, and identified proximal tubular cell PTPRG as a putative novel therapeutic target

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    corecore