55 research outputs found

    Two neuroanatomical signatures in schizophrenia: Expression strengths over the first 2 years of treatment and their relationships to neurodevelopmental compromise and antipsychotic treatment

    Get PDF
    BACKGROUND AND HYPOTHESIS: Two machine learning derived neuroanatomical signatures were recently described. Signature 1 is associated with widespread grey matter volume reductions and signature 2 with larger basal ganglia and internal capsule volumes. We hypothesized that they represent the neurodevelopmental and treatment-responsive components of schizophrenia respectively. STUDY DESIGN: We assessed the expression strength trajectories of these signatures and evaluated their relationships with indicators of neurodevelopmental compromise and with antipsychotic treatment effects in 83 previously minimally treated individuals with a first episode of a schizophrenia spectrum disorder who received standardized treatment and underwent comprehensive clinical, cognitive and neuroimaging assessments over 24 months. Ninety-six matched healthy case-controls were included. STUDY RESULTS: Linear mixed effect repeated measures models indicated that the patients had stronger expression of signature 1 than controls that remained stable over time and was not related to treatment. Stronger signature 1 expression showed trend associations with lower educational attainment, poorer sensory integration, and worse cognitive performance for working memory, verbal learning and reasoning and problem solving. The most striking finding was that signature 2 expression was similar for patients and controls at baseline but increased significantly with treatment in the patients. Greater increase in signature 2 expression was associated with larger reductions in PANSS total score and increases in BMI and not associated with neurodevelopmental indices. CONCLUSIONS: These findings provide supporting evidence for two distinct neuroanatomical signatures representing the neurodevelopmental and treatment-responsive components of schizophrenia

    The GPR55 agonist lysophosphatidylinositol acts as an intracellular messenger and bidirectionally modulates Ca2+-activated large-conductance K+ channels in endothelial cells

    Get PDF
    Lysophospholipids are known to serve as intra- and extracellular messengers affecting many physiological processes. Lysophosphatidylinositol (LPI), which is produced in endothelial cells, acts as an endogenous agonist of the orphan receptor, G protein-coupled receptor 55 (GPR55). Stimulation of GPR55 by LPI evokes an intracellular Ca2+ rise in several cell types including endothelial cells. In this study, we investigated additional direct, receptor-independent effects of LPI on endothelial large-conductance Ca2+ and voltage-gated potassium (BKCa) channels. Electrophysiological experiments in the inside-out configuration revealed that LPI directly affects the BKCa channel gating properties. This effect of LPI strictly depended on the presence of Ca2+ and was concentration-dependent, reversible, and dual in nature. The modulating effects of LPI on endothelial BKCa channels correlated with their initial open probability (Po): stimulation at low Po (<0.3) and inhibition at high Po levels (>0.3). In the whole-cell configuration, LPI in the pipette facilitated membrane hyperpolarization in response to low (0.1–2 μM) histamine concentrations. In contrast, LPI counteracted membrane hyperpolarization in response to supramaximal cell stimulation with histamine. These results highlight a novel receptor-independent and direct bidirectional modulation of BKCa channels by LPI on endothelial cells. We conclude that LPI via this mechanism serves as an important modulator of endothelial electrical responses to cell stimulation

    Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium

    Get PDF
    BACKGROUND Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia (N = 11,095), using a single image analysis protocol. METHODS We included T1-weighted data from 46 datasets (5,080 affected individuals and 6,015 controls) from the ENIGMA Consortium. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Analyses were also performed with respect to the use of antipsychotic medication and other clinical variables, as well as age and sex. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029). RESULTS Small average differences between cases and controls were observed for asymmetries in cortical thickness, specifically of the rostral anterior cingulate (d = −0.08, pFDR = 0.047) and the middle temporal gyrus (d = −0.07, pFDR = 0.048), both driven primarily by thinner cortices in the left hemisphere in schizophrenia. These asymmetries were not significantly associated with the use of antipsychotic medication or other clinical variables. Older individuals with schizophrenia showed a stronger average leftward asymmetry of pallidum volume than older controls (d = 0.08, pFDR = 9.0 × 10−3). The multivariate analysis revealed that 7% of the variance across all structural asymmetries was explained by case-control status (F = 1.87, p = 1.25 × 10−5). CONCLUSIONS Altered trajectories of asymmetrical brain development and/or lifespan asymmetry may contribute to schizophrenia pathophysiology. Small case-control differences of brain macro-structural asymmetry may manifest due to more substantial differences at the molecular, cytoarchitectonic or circuit levels, with functional relevance for lateralized cognitive processes

    Country-level gender inequality is associated with structural differences in the brains of women and men

    Full text link
    Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women's worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women's brains and provide initial evidence for neuroscience-informed policies for gender equality

    Pelvic trauma : WSES classification and guidelines

    Get PDF
    Complex pelvic injuries are among the most dangerous and deadly trauma related lesions. Different classification systems exist, some are based on the mechanism of injury, some on anatomic patterns and some are focusing on the resulting instability requiring operative fixation. The optimal treatment strategy, however, should keep into consideration the hemodynamic status, the anatomic impairment of pelvic ring function and the associated injuries. The management of pelvic trauma patients aims definitively to restore the homeostasis and the normal physiopathology associated to the mechanical stability of the pelvic ring. Thus the management of pelvic trauma must be multidisciplinary and should be ultimately based on the physiology of the patient and the anatomy of the injury. This paper presents the World Society of Emergency Surgery (WSES) classification of pelvic trauma and the management Guidelines.Peer reviewe

    Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium

    Get PDF
    Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, using MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets in the ENIGMA consortium, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macro-structural asymmetry may reflect differences at the molecular, cytoarchitectonic or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia

    Pelvic trauma: WSES classification and guidelines

    Full text link

    The little Karroo

    No full text
    corecore