68 research outputs found

    Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity

    Get PDF
    Lack of immunological tolerance against self-antigens results in autoimmune disorders. During onset of autoimmunity, dendritic cells (DCs) are thought to be critical for priming of self-reactive T cells that have escaped tolerance induction. However, because DCs can also induce T cell tolerance, it remains unclear whether DCs are required under steady-state conditions to prevent autoimmunity. To address this question, we crossed CD11c-Cre mice with mice that express diphtheria toxin A (DTA) under the control of a loxP-flanked neomycin resistance (neoR) cassette from the ROSA26 locus. Cre-mediated removal of the neoR cassette leads to DTA expression and constitutive loss of conventional DCs, plasmacytoid DCs, and Langerhans cells. These DC-depleted (ΔDC) mice showed increased frequencies of CD4 single-positive thymocytes and infiltration of CD4 T cells into peripheral tissues. They developed spontaneous autoimmunity characterized by reduced body weight, splenomegaly, autoantibody formation, neutrophilia, high numbers of Th1 and Th17 cells, and inflammatory bowel disease. Pathology could be induced by reconstitution of wild-type (WT) mice with bone marrow (BM) from ΔDC mice, whereas mixed BM chimeras that received BM from ΔDC and WT mice remained healthy. This demonstrates that DCs play an essential role to protect against fatal autoimmunity under steady-state conditions

    Endogenous antigen processing drives the primary CD4+ T cell response to influenza.

    Get PDF
    By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with major histocompatibility complex class II molecules. Alternative pathways of epitope production have been identified, but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome and γ-interferon-inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses

    Apoptotic cell-based therapies against transplant rejection: role of recipient’s dendritic cells

    Get PDF
    One of the ultimate goals in transplantation is to develop novel therapeutic methods for induction of donor-specific tolerance to reduce the side effects caused by the generalized immunosuppression associated to the currently used pharmacologic regimens. Interaction or phagocytosis of cells in early apoptosis exerts potent anti-inflammatory and immunosuppressive effects on antigen (Ag)-presenting cells (APC) like dendritic cells (DC) and macrophages. This observation led to the idea that apoptotic cell-based therapies could be employed to deliver donor-Ag in combination with regulatory signals to recipient’s APC as therapeutic approach to restrain the anti-donor response. This review describes the multiple mechanisms by which apoptotic cells down-modulate the immuno-stimulatory and pro-inflammatory functions of DC and macrophages, and the role of the interaction between apoptotic cells and APC in self-tolerance and in apoptotic cell-based therapies to prevent/treat allograft rejection and graft-versus-host disease in murine experimental systems and in humans. It also explores the role that in vivo-generated apoptotic cells could have in the beneficial effects of extracorporeal photopheresis, donor-specific transfusion, and tolerogenic DC-based therapies in transplantation

    Constitutive crosspresentation of tissue antigens by dendritic cells controls CD8+ T cell tolerance in vivo.

    No full text
    Immature dendritic cells (DCs) sample tissue-specific antigens (TSAs) and process them for "crosspresentation" via major histocompatibility complex (MHC) class I and II molecules. Findings with adoptively transferred T cell receptor (TCR)-transgenic CD8+ T cells in transgenic mice expressing model TSA indicate that this process contributes to tolerance induction of CD8+ T cells, a phenomenon termed "crosstolerance." However, up to now it has been unknown whether "crosstolerance" can also control autoimmune T cells specific for physiological nontransgenic TSA. Here, we showed that a DC-specific deficiency in uptake of apoptotic material inhibits crosspresentation in vivo. This defect allowed the accumulation of fully functional autoreactive CD8+ T cells that could be activated for autoimmune attack in peripheral lymphoid organs. Thus, our data demonstrate the importance of crosstolerance induction by DCs as a vital instrument for controlling self-reactive T cells from the peripheral repertoire and preventing autoimmune disease

    Constitutive crosspresentation of tissue antigens by dendritic cells controls CD8+ T cell tolerance in vivo.

    Get PDF
    Immature dendritic cells (DCs) sample tissue-specific antigens (TSAs) and process them for "crosspresentation" via major histocompatibility complex (MHC) class I and II molecules. Findings with adoptively transferred T cell receptor (TCR)-transgenic CD8+ T cells in transgenic mice expressing model TSA indicate that this process contributes to tolerance induction of CD8+ T cells, a phenomenon termed "crosstolerance." However, up to now it has been unknown whether "crosstolerance" can also control autoimmune T cells specific for physiological nontransgenic TSA. Here, we showed that a DC-specific deficiency in uptake of apoptotic material inhibits crosspresentation in vivo. This defect allowed the accumulation of fully functional autoreactive CD8+ T cells that could be activated for autoimmune attack in peripheral lymphoid organs. Thus, our data demonstrate the importance of crosstolerance induction by DCs as a vital instrument for controlling self-reactive T cells from the peripheral repertoire and preventing autoimmune disease

    Cdc42-dependent actin dynamics controls maturation and secretory activity of dendritic cells

    No full text
    Cell division cycle 42 (Cdc42) is a member of the Rho guanosine triphosphatase family and has pivotal functions in actin organization, cell migration, and proliferation. To further study the molecular mechanisms of dendritic cell (DC) regulation by Cdc42, we used Cdc42-deficient DCs. Cdc42 deficiency renders DCs phenotypically mature as they up-regulate the co-stimulatory molecule CD86 from intracellular storages to the cell surface. Cdc42 knockout DCs also accumulate high amounts of invariant chain–major histocompatibility complex (MHC) class II complexes at the cell surface, which cannot efficiently present peptide antigens (Ag’s) for priming of Ag-specific CD4 T cells. Proteome analyses showed a significant reduction in lysosomal MHC class II–processing proteins, such as cathepsins, which are lost from DCs by enhanced secretion. As these effects on DCs can be mimicked by chemical actin disruption, our results propose that Cdc42 control of actin dynamics keeps DCs in an immature state, and cessation of Cdc42 activity during DC maturation facilitates secretion as well as rapid up-regulation of intracellular molecules to the cell surface
    corecore