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SUMMARY

Immature dendritic cells (DCs) sample tissue-spe-
cific antigens (TSAs) and process them for ‘‘cross-
presentation’’ via major histocompatibility complex
(MHC) class I and II molecules. Findings with adop-
tively transferred T cell receptor (TCR)-transgenic
CD8+ T cells in transgenic mice expressing model
TSA indicate that this process contributes to
tolerance induction of CD8+ T cells, a phenomenon
termed ‘‘crosstolerance.’’ However, up to now it
has been unknown whether ‘‘crosstolerance’’ can
also control autoimmune T cells specific for physio-
logical nontransgenic TSA. Here, we showed that a
DC-specific deficiency in uptake of apoptotic mate-
rial inhibits crosspresentation in vivo. This defect
allowed the accumulation of fully functional auto-
reactive CD8+ T cells that could be activated for auto-
immune attack in peripheral lymphoid organs. Thus,
our data demonstrate the importance of crosstoler-
ance induction by DCs as a vital instrument for
controlling self-reactive T cells from the peripheral
repertoire and preventing autoimmune disease.

INTRODUCTION

Control of autoreactive T cells by tolerance induction is essential

to avoid autoimmune disease. The majority of self-specific

T cells are deleted by negative selection in the thymus. Here, pe-

ripheral tissue-specific antigens (TSAs) are expressed in the thy-

mic medulla by specialized epithelial cells that confront develop-

ing thymocytes with self-antigen (Ag) in the context of major

histocompatibility complex (MHC) class I and II molecules and

delete those with high avidity self-reactive T cell receptors

(TCRs) (Kyewski and Klein, 2006). Although this process is very

efficient, some self-reactive T cells are spared and can reach pe-

ripheral organs (Gallegos and Bevan, 2006; Liu et al., 1995; Zehn

and Bevan, 2006). Here, different peripheral tolerance mecha-
nisms are in place to protect organs from autoimmune damage

(Redmond and Sherman, 2005). Because naive T cells remain

sequestered in lymphoid organs and blood (Mackay, 1993),

they do not normally recognize TSA directly on parenchymal tis-

sue cells and are therefore considered to be ‘‘ignorant.’’ Instead,

Ag-capturing DCs continuously migrate from peripheral tissues

such as stomach, intestine, pancreas, lung, and skin (Adler

et al., 1998; Belz et al., 2002; Huang et al., 2000; Kurts et al.,

1996; Scheinecker et al., 2002; Turley et al., 2003; Vermaelen

et al., 2001) to lymph nodes, transporting TSA for presentation

to circulating naive T cells. It is thought that under noninflamma-

tory conditions, constitutive presentation of self-Ags by DCs

stimulates CD8+ T cells to proliferate abortively, thereby resulting

in their deletion or inactivation (Redmond and Sherman, 2005).

Because DCs do not synthesize TSA proteins themselves, the

presentation of exogenous Ag in the context of MHC class I mol-

ecules to CD8+ T cells must occur via the crosspresentation

pathway (Bevan, 1976; Heath and Carbone, 2001). This mecha-

nism is thought to be crucial for generating immune responses to

Ags that are exclusively produced by nonprofessional APC, e.g.,

tumor, cellular, or tissue tropic viral proteins (Huang et al., 1994;

Kurts et al., 1996; Li et al., 2001; Sigal et al., 1999).

However, evidence for the involvement of crosspresentation in

tolerance induction is based entirely on transgenic mice ex-

pressing model TSA and adoptively transferred TCR-transgenic

CD8+ T cells with rather high avidity for self-TSA (Belz et al.,

2002; Hernandez et al., 2001; Kurts et al., 1996; Morgan et al.,

1999). So far, it is unknown whether ‘‘crosstolerance’’ also oper-

ates under more physiological conditions because several lines

of evidence argue against an important role of this mechanism.

For example, in contrast to the adoptive T cell transfer systems

used to study ‘‘crosstolerance,’’ endogenous self-reactive

T cells might be of rather low avidity for self (Zehn and Bevan,

2006). Further, only tissue Ag that is expressed at sufficiently

high amounts will be crosspresented for tolerance induction

(Kurts et al., 1998), and the amounts at which natural TSA are

expressed is predominantly unknown. In addition, the stability

of TSA also determines crosspresentation (Wolkers et al., 2004),

and instable TSAs are likely to be crosspresented inefficiently

or not at all.
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More recently, naive T cells were shown to migrate very effi-

ciently through peripheral tissues (Cose et al., 2006) and conse-

quently may encounter TSAs directly on parenchymal tissue

rather than on DCs in lymph nodes. Likewise, lymph node stro-

mal cells can express and directly present TSAs and tolerize

self-reactive CD8+ T cells (Lee et al., 2007). Taken together,

the physiological contribution of ‘‘crosspresentation’’ by DCs

to tolerance and prevention of autoimmunity is unclear at the

moment.

Here, we showed that DCs with a defect in uptake of soluble

protein and apoptotic cellular Ag were unable to crosspresent

TSA and were inefficient at cros-tolerizing CD8+ T cells in vivo.

This led to the accumulation of fully functional self-reactive

CD8+ T cells in peripheral lymphoid organs ready to be activated

for autoimmune attack. Thus, our data demonstrate a consider-

able contribution of crosspresentation to tolerance induction

as a vital instrument to eliminate self-reactive T cells from the

peripheral repertoire and prevent autoimmune disease.

RESULTS

Characterization of Crosspresentation
Capacities of Rac Mice
The constitutive uptake of exogenous protein as well as T cell

priming by DCs is dependent on the GTPase Rac1 (Benvenuti

et al., 2004; West et al., 2000). To investigate the relevance of

crosspresentation in vivo, we analyzed transgenic mice express-

ing a dominant-negative (N17) mutant of the GTPase Rac1 under

control of the DC-selective CD11c-promoter [CD11c-Rac1(N17)

mice or short Rac mice] (Kerksiek et al., 2005; Neuenhahn et al.,

2006). Because several receptors for apoptotic material are

functionally dependent on Rac1 (Albert et al., 2000; Lauber

et al., 2004; Park et al., 2007), DCs from Rac mice are unable

to initiate CD8+ T cell responses against apoptotic cellular Ag

(Kerksiek et al., 2005) or proteins expressed by recombinant

Listeria monocytogenes (Kerksiek et al., 2005; Neuenhahn

et al., 2006). Uptake of apoptotic material facilitates entry of

self-Ag into the crosspresentation pathway (Albert et al., 1998a;

Albert et al., 1998b; Kurts et al., 1998; Steinman et al., 2000), and

tissue-derived apoptotic material is considered a major source

for self-TSA crosspresented by DCs (Moser, 2003). Because

Rac mice have a defect in crosspresenting apoptotic cellular

protein Ag (Kerksiek et al., 2005), we next asked whether these

animals could crosspresent soluble protein Ag. To this end, we

immunized transgenic and control mice with the soluble pro-

tein-Ag ovalbumin (OVA) and monitored activation and expan-

sion of adoptively transferred OVA-specific TCR-transgenic

CD8+ T cells (OT-I) (Figures 1A–1C). In nontransgenic littermates,

OT-I T cells expanded substantially to crosspresented Ag,

whereas the expansion of OT-I T cells in Rac mice was severely

inhibited (Figures 1A–1C). In addition, the capacity of OT-I T cells

to produce IFN-g in vitro (Figure 1D), as well as their cytolytic ac-

tivity in vivo (Figure 1E), were strongly reduced as compared to

those from nontransgenic littermates. Similar results were ob-

tained with OVA-coated polystyrene beads and OVA:IgG-

immune complexes (data not shown).

Crosspresentation of OVA-protein by DCs is mediated via the

mannose-receptor (Burgdorf et al., 2007; Burgdorf et al., 2006),

and targeting of OVA to the DEC-205 receptor also leads to
522 Immunity 28, 521–532, April 2008 ª2008 Elsevier Inc.
efficient crosspresentation by CD8+ DCs (Bonifaz et al., 2002).

To analyze whether crosspresentation of Ag directly targeted

to the DEC-205 receptor was also defective in Rac-DCs, we im-

munized mice with aDEC205:OVA complexes. However, cross-

presentation of aDEC-205:OVA was also strongly reduced in

Rac mice, and the proliferation of OT-I cells was diminished as

compared to nontransgenic mice (Figure 1F). This lead to

a >60% reduction in the accumulation of OT-I T cells in lymph

nodes and spleens of immunized Rac mice as compared to non-

transgenic mice (Figure 1G).

We have shown previously that although the total numbers of

CD11c+ DCs are unaltered in Rac mice, the relative frequency of

CD8+ DCs is reduced by 20%–30% (Kerksiek et al., 2005).

Therefore, the reduced crosspresentation observed above could

be due to (1) decreased uptake and internalization of exogenous

protein, (2) reduced numbers of crosspresenting CD8+ DCs in

lymphoid organs, or (3) a combination of both. To differentiate

between these possibilities, we immunized mice with OVA and

isolated CD8+ DCs from spleens. The isolated CD8+ DCs were

then incubated with CFSE-labeled OT-I T cells in vitro at identical

DC numbers (Figure 1H). Under these conditions, Rac-CD8+

DCs crosspresented OVA with severely reduced efficiency as

compared to Tg� CD8+ DCs (Figure 1H). Together, these find-

ings indicate that the inhibition of crosspresentation in Rac

mice is a consequence of diminished protein uptake (Kerksiek

et al., 2005) as well as reduced cell numbers of CD8+ DCs.

Next, we analyzed endogenous polyclonal CTL responses in

Rac mice. CD8+ T cell responses against virus-like particles

(vlps) have previously been shown to depend on crosspresenta-

tion (Ruedl et al., 2002; Storni and Bachmann, 2004). Accord-

ingly, when Rac mice were immunized with vlps carrying the

gp33-41 epitope of LCMV, we detected significantly reduced

numbers of H2Db-gp33-specific CD8+ T cells (Figures 1I and

1J, p = 0.01, Student’s t test), which were not significantly ele-

vated above those found in nonimmunized control mice (Figures

1I and 1J, p = 0.17, Student’s t test). Accordingly, vlp vaccination

could not elicit significant cytotoxic activity in Rac mice as com-

pared to control mice (Figure 1K, p = 0.14, Student’s t test),

whereas in nontransgenic mice, gp33-coated target cells were

lysed specifically (Figure 1K, p = 0.01, Student’s t test as com-

pared to controls). Taken together, the above immunizations

demonstrate that Rac mice are deficient in mounting optimal

CTL responses via crosspresentation.

The Rac Transgene Does Not Affect Direct MHC
Class I or MHC Class II Presentation
To further characterize immune responses in Rac mice, we im-

munized mice with peptide Ag, which can be directly presented

on MHC class I molecules (Figures 2A–2D). The expansion of

OT-I T cells (Figures 2A and 2B) and the induction of effector

functions (Figures 2C and 2D) in Rac mice were indistinguishable

from OT-I T cells in nontransgenic littermates. We also observed

in Rac mice OT-I expansion that was comparable to Tg�mice af-

ter immunization with replication incompetent HSV-OVA, further

demonstrating normal direct MHC class I presentation (Figures

S1A and S1B available online). In addition, Rac mice showed

no defect in the ability to stimulate OVA-specific TCR-transgenic

CD4+ T cells (OT-II) in response to whole protein and peptide as

compared to Tg� mice (Figures S1C and S1D). Because the
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Figure 1. Rac Mice Exhibit a Reduced Ability

to Crosspresent

CD11c-(N17) Rac1 transgenic mice (Tg+) or non-

transgenic littermates (Tg�) were adoptively trans-

ferred with 1 3 106 purified Ly5.1+ OT-I T cells

(A–G) and immunized i.v. 1 day later with 100 mg

soluble OVA and LPS (A–E) or 10 mg of anti-

DEC205-OVA conjugate and LPS (F and G). Con-

trol mice received LPS only. As shown in (A) and

(B), the frequency of OT-I T cells from PBL was

determined by flow cytometry by gating on

CD8+Ly5.1+OT-I T cells at different time points af-

ter immunization. A cohort of mice was sacrificed

on day 4 to determine (C) total numbers and (D)

intracellular IFN-g production of OT-I T cells. (E)

shows that at day 10, an in vivo killing assay was

performed. (F) shows that 3 days after immuniza-

tion with anti-DEC205-OVA, lymph nodes and

spleens were harvested and analyzed for OT-I T

cell proliferation by flow cytometry. Prior to CFSE

dilution analysis, adoptively transferred cells

were identified as the Ly5.1+, CD8+ population

(not shown). As shown in (G), frequencies and total

numbers of divided and undivided OT-I cells were

calculated from the total cell number of each

spleen and pooled inguinal lymph nodes from

each mouse. In (H), to determine the priming ca-

pacities of Tg+ DCs in vitro, we immunized mice

with 5 mg whole OVA protein in PBS or PBS alone.

The following day, CD8+ DCs were purified from

spleen by magnetic separation. Equal numbers

of CD8+ DCs were then cocultured with purified

CFSE-labeled Ly5.1+OT-I T cells at DC:T cell ratios

of 1:2.5 for 4 days. Proliferation was visualized by

flow cytometry as CFSE dilution of the Ly5.1+

cells, and numbers indicate the percent of undi-

vided OT-I T cells from each culture. As shown in

(I)–(K), mice were immunized s.c. with 150 mg

CpG-containing virus-like particles derived from

bacteriophage Qß, and such particles were chem-

ically linked to the LCMV peptide epitope gp33-41.

As shown in (I), 7 days after immunization, the fre-

quency of Db-restricted, gp33-specific CD8+ T

cells was determined from PBL with H2Db-gp33-

tetramers. The kinetics of such a response is shown in (J). As shown in (K), 12 days after immunization, gp33-specific cytolytic activities in the different recipients

were measured with an in vivo killing assay. Each symbol or bar represents the average of at least three mice per group. Error bars indicate the SEM within a group.

The experiments shown here have been repeated more than three times (A–E) or twice (F–K) with similar results.
reduction of OVA protein uptake in Rac mice is restricted to

CD8+ DCs (Kerksiek et al., 2005), the CD8� DC subtype that is

particularly efficient at presentation of soluble Ag to CD4+ T cells

(Pooley et al., 2001) is possibly responsible for normal OT-II re-

sponses in Rac mice. Taken together, our findings indicate that

Rac mice show a specific defect in crosspresentation (Figure 1)

but are able to mount normal CD4+ and CD8+ T cell responses to

directly presented or virus-derived MHC class I and class II epi-

topes (Figure 2 and Figure S1). These properties render Rac mice

as a suitable tool to study the relevance of crosspresentation for

tolerance induction in vivo.

The Role of Crosspresenting DCs in an Autoimmune
Diabetes Model
Next, we bred Rac mice to the RIP-mOVA strain (RIP for short)

expressing high amounts of membrane-bound OVA as a surro-

gate TSA under control of the rat insulin promoter selectively in
the pancreas, kidney, and thymus (Gallegos and Bevan, 2004;

Kurts et al., 1996). Central thymic CD8+ T cell tolerance is very

efficient in RIP mice because OVA-reactive CD8+ T cells are un-

detectable upon immunization (Bennett et al. [1997] and Fig-

ure 3). Although thymic deletion of OVA-specific CD8+ T cells

is mediated by epithelial cells rather than thymic DCs (Gallegos

and Bevan, 2004), we had to formally exclude an influence of

Rac DCs on negative selection in Rac mice before studying pe-

ripheral tolerance. To this end, we bred OT-I mice with Rac mice

to create the OT-IxRac line and generated bone-marrow chi-

meras (Figure 3A). In OT-IxRac > RIP bone-marrow chimeras,

central deletion of OT-I T cells was similarly efficient as com-

pared to OT-I > RIP chimeras indicating normal negative selec-

tion (Figure 3A). Immunization of double-transgenic Rac-RIP

mice with OVA-encoding HSV confirmed this result because ex-

pansion of endogenous OVA-specific CTL (Figures 3B and 3C)

was undetectable. In contrast, HSV-gB-specific CTL were
Immunity 28, 521–532, April 2008 ª2008 Elsevier Inc. 523
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Figure 2. The Rac Transgene Does Not

Affect Direct MHC Class I Presentation

CD11c-(N17) Rac1 transgenic mice (Tg+) or non-

transgenic littermates (Tg�) were adoptively trans-

ferred with 1 3 106 purified Ly5.1+ OT-I T cells and

immunized i.v. 1 day later with 10 mg SIINFEKL-

peptide and LPS. Control mice received LPS

only. The frequency of OT-I T cells from PBL was

determined by flow cytometry by gating on

CD8+Ly5.1+OT-I T cells as shown in Figure 1A,

and their frequency was determined at different

time points after immunization (A). A cohort of mice was sacrificed on day 4 in order to determine (B) the total numbers and (C) intracellular IFN-g production

of OT-I T cells in spleens. As shown in (D), at day 10, an in vivo killing assay was performed. Each symbol or bar represents the average of at least three

mice per group. All error bars for this figure indicate the SEM within a group (n = 2–3 mice per group). The experiments shown here have been repeated at least

three times with similar results.
readily detectable at similar amounts as in wild-type controls

(Figures 3B and 3C). Because none of the mice developed diabe-

tes (data not shown), these results indicate that OVA-specific

central tolerance induction was not affected in Rac-RIP mice

and does not depend on crosspresentation by DCs, as published

previously (Gallegos and Bevan, 2004). Therefore, a contribution

of endogenous OVA-specific CTL can be formally excluded in

Rac-RIP mice. In a similar approach, we monitored the capacity

of thymic Rac-DCs to negatively select CD4+ T cells. Likewise,

negative selection of OT-II thymocytes was not affected in

OT-IIxRac > RIP bone-marrow chimeras (Figure S2); the num-

bers and frequencies of OT-II cells were similarly reduced as

compared to thymi and peripheral organs of OT-II > RIP chi-

meras. This result is not surprising given the ability of Rac DCs

to prime normal CD4+ T cell responses (Figure S1C and S1D)

and previous findings on the role of thymic DCs in negative se-

lection of self-reactive CD4+ thymocytes (Brocker et al., 1997;

Gallegos and Bevan, 2004).

Because induction of CD8+ T cell deletional peripheral toler-

ance is accompanied by abortive proliferation (Kurts et al.,

1997; Kurts et al., 1998), we labeled OT-I T cells with the prolifer-

ation marker CFSE and monitored their proliferation upon injec-

tion into wild-type, RIP, or Rac-RIP mice (Figure 4). OT-I T cells

proliferated vigorously in pancreatic and renal lymph nodes of

RIP mice (Figure 4A). The highest rate of proliferation was con-

fined to lymph nodes draining TSA-expressing tissues but not

skin-draining inguinal nodes (Kurts et al., 1996). In contrast,

OT-I T cells in Rac-RIP recipients proliferated at a much slower

rate (Figure 4A), and less dividing OT-I T cells could be found

in Rac-RIP mice as compared to RIP mice (Figure 4B). Taken to-

gether, these data showed that the inhibition of crosspresenta-

tion in DCs of Rac mice impairs constitutive TSA presentation

to CD8+ T cells in vivo.

Defective Peripheral Crosstolerance in Rac-Rip Mice
Next, we tested whether the failure of DCs in Rac-RIP mice to

crosspresent TSA and to induce efficient proliferation would ob-

struct peripheral crosstolerance. We injected naive OT-I T cells

into different recipients and analyzed the mice 3–4 weeks later

(see protocol, Figure 5A). OT-I T cells were present at �10-fold

higher frequencies in wild-type compared to RIP recipients be-

cause it has been previously reported that their deletion is near

complete after 3 weeks in RIP mice (Kurts et al., 1996) (Figures

5B and 5C). In contrast, the frequency of OT-I T cells in Rac-
524 Immunity 28, 521–532, April 2008 ª2008 Elsevier Inc.
RIP mice was comparable to that found in wild-type recipients

(Figures 5B and 5C). To assess the cells’ state of tolerance in

the different mice, we challenged them with HSV-OVA. As

expected, the remaining OT-I T cells in RIP recipients had been

rendered unresponsive and showed no marked Ag-specific ex-

pansion after immunization (Figures 5B and 5C). In contrast,

OT-I T cells expanded vigorously in wild-type and in Rac-RIP-

mice (Figures 5B and 5C), indicating that crosstolerance to

OVA was not established in Rac-RIP mice. Wild-type mice

were not expected to develop disease because of the lack of

OVA in their pancreas (Figure 5D), and RIP-mice had effectively

crosstolerized OT-I T cells and were protected from diabetes

(Figure 5D). In contrast, all mice of the double-transgenic Rac-

RIP group showed elevated urine glucose concentrations at

4 days and maximal levels of diabetes at 5 days after HSV-

OVA immunization, confirming the absence of protective cross-

tolerance (Figure 5D). These data show that Rac-RIP mice are

defective in crosstolerizing adoptively transferred OT-I T cells,

specific for OVA expressed in the pancreas. Because of the

transgenic limitations of this system, the questions concerning

a contribution of crosspresentation to tolerance against normal

nontransgenic TSA in endogenous polyclonal postthymic CD8+

T cells remain unanswered.

Self-Reactive T Cells Accumulate in Rac Mice
If crosstolerance by DCs is physiologically relevant, potentially

self-reactive CD8+ T cells should be detectable in peripheral lym-

phoid organs of Rac mice. To detect these cells, we transferred

CFSE-labeled polyclonal T cells from Rac mice or nontransgenic

littermates into wild-type, Thy1.1-congenic recipients, in which

they could encounter APC continuously crosspresenting TSA.

Fifteen days after transfer, CD8+Thy1.2+ T cells were quantified

in spleens (Figure 6A) and lymph nodes (data not shown) of

Thy1.1 recipients. We detected a more than 6-fold increase in

the frequency of CD8+Thy1.2+ T cells from Rac mice as com-

pared to those originating from nontransgenic littermates

(Figure 6A). More importantly, the total cell numbers of CD8+

Thy1.2+ T cells from Rac mice found in spleens (Figure 6B) and

lymph nodes (data not shown) were 6- to 8-fold higher as com-

pared to those of CD8+Thy1.2+ from nontransgenic mice. These

differences were due to a strong increase in the fraction

of CD8+Thy1.2+CFSElo T cells and were caused by proliferative

expansion (Figures 6A and 6B) probably in response to TSA.

However, despite the proliferative expansion of TSA-specific



Immunity

Dendritic Cells Mediate Peripheral Crosstolerance
Figure 3. The Rac Transgene Does Not Affect Deletion of OT-I

T Cells in RIP Thymi

(A) CD8 SP thymocytes and OT-I cells from OT-I and OT-IxRac donors are

equally reduced in chimeric RIP thymi. Grafting OT-I- or OT-IxRac bone mar-

row into lethally irradiated wild-type or RIP recipients generated [OT-I/WT],

[OT-IxRac/WT], [OT-I/RIP], and [OT-IxRac/RIP] chimeric thymi. Thymo-

cytes from the indicated mice were analyzed for expression of CD4 and CD8

by flow cytometry. The numbers indicate the percentage of cells in each

gate (A) CD8+ thymocytes (cells in gate) were further analyzed for TCR-Va2,

the TCR-a chain of the OT-I TCR, and expression of heat stable Ag (CD24)

as a maturation marker (lower panels). Numbers indicate the percentages of

most mature CD24lowVa2+ thymocytes as average of n = 2–3 thymi per type

of chimera (lower panels).

(B) Wild-type, RIP-mOVA, and RacxRIP mice were immunized with 4 3 106

particles of HSV-OVA i.v. The polyclonal endogenous CD8+ T cell responses

of the respective mice were monitored from PBL by flow cytometry. Examples

for these analyses from each type of mouse are shown. Percentages of ([B],

left panel) OVA-specific cells and ([B], right panel) HSV-gB-specific CD8+

T cells were obtained by gating on CD8+ cells (data not shown) and analysis

of CD44+MHC-tetramer+ frequencies. The results are shown in (C) as mean ±

SEM (n = 3 mice per group). Shown is one representative experiment of

three.
CD8+ T cells, recipient mice did not show signs of disease or

weight loss (data not shown). We therefore assumed that under

steady-state conditions, i.e., in the absence of inflammatory

stimuli, TSA-specific CD8+ T cells would transiently expand, sim-

ilar to OT-I cells in the RIP-OVA model (Figure 4), but could not

develop autoaggressive capacities.

Therefore, we next tested whether autoimmunity could be trig-

gered in the presence of nonspecific inflammatory stimuli. Anti-

CD40 treatment has been shown to induce tissue-specific auto-

immune reactions to endogenous crosspresented model Ag,

such as OVA (Vezys and Lefrancois, 2002) or LCMV glycoprotein

(Roth et al., 2002). In addition, anti-CD40 treatment could

replace the otherwise required CD4+ T cell help for productive

crosspriming of CD8+ T cells (Bennett et al., 1998). Thus, the

above experiment (Figures 6A and 6B) was repeated in the pres-

ence of agonist CD40 mAb (Figure 6C). However, in contrast to

TCR-transgenic T cells (Roth et al., 2002; Vezys and Lefrancois,

2002) or CD8+ T cells with specificity for foreign Ag (Bennett

et al., 1998), the addition of anti-CD40 could not elicit adequate

crosspriming of Rac-CD8+ T cells for autoimmunity (Figure 6C).

Therefore, autoreactive peripheral CD8 T cells from Rac mice

behave similar to low-avidity OVA-specific CD8 T cells, which

could not be activated by inflammatory stimuli plus self-Ag

(Zehn and Bevan, 2006). These low-avidity OVA-specific CD8

T cells need high amounts of OVA expressed by recombinant

bacteria to be activated for autoimmunity. Because the cognate

Ag(s) of T cells from Rac mice are currently unknown, specific

priming conditions need to be defined in order to reveal their

specificities.

Rac T Cells Develop Autoimmunity under Lymphopenic
Conditions
The conditions for effective crosspriming of polyclonal self-spe-

cific T cells accumulating in the absence of peripheral tolerance

are unknown. Deductions from the crosspriming conditions de-

fined for CD8+ T cells specific for foreign Ag suggest depen-

dence on help by CD4+ T cells (Bennett et al., 1997). Further-

more, the precursor frequencies of such self-specific T cells

are not known. Although a mouse may contain 100–200 naive

CD8+ T cells specific for a given viral epitope (Blattman et al.,

2002), highly efficient thymic negative selection against self (Ma-

this and Benoist, 2004) should drastically reduce the frequencies

of peripheral self-reactive T cells. Taking this into account, we

next analyzed the autoimmune potential of Rac T cells in lympho-

penic hosts. Rag1-deficient mice have been used extensively in

adoptive-transfer studies of T cell-induced colitis. To improve

the conditions for activation of Rac-CD8+ T cells, we eliminated

CD25+ regulatory T (Treg) cells before transfer. In this model, the

absence of suppression by Treg cells in combination with lym-

phopenia allows even self-tolerant wild-type T cells to induce au-

toimmunity (Powrie, 1995). If T cells from Rac mice have a greater

autoimmune potential, we would expect either faster onset of

disease or accelerated mortality. As expected, Rag1�/�mice re-

ceiving T cells exhibited diarrhea, weight loss, and other general

signs of illness (Figure 7A, left panel, and data not shown). How-

ever, illness started significantly earlier in the groups of mice

receiving T cells from Rac donors (p = 0.0256, log rank test;

Figure 7A, right panel). In addition, the rate of early mortality be-

fore day 30 in these experiments was three times more elevated
Immunity 28, 521–532, April 2008 ª2008 Elsevier Inc. 525
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Figure 4. Reduced Proliferation of OVA-Re-

active CD8+ T Cells in Draining Lymph No-

des of Rac-RIP Mice

Wild-type, RIP-mOVA transgenic mice and

CD11c-(N17) Rac1xRIP-mOVA double-transgenic

mice (Rac-RIP mice) received 9 3 106 CFSE-la-

beled purified Ly5.1+OT-I T cells i.v. Lymph nodes

were analyzed 68 hr later. The frequency of divid-

ing cells among OT-I T cells in the respective

lymph nodes was determined by gating on

CD8+Ly5.1+ cells (not shown). (A) shows undivided

CFSE+ OT-I T cells and daughter cells with diluted

CFSE contents. The frequency of cells that have

undergone one or more divisions is indicated (av-

erage of n = 3 mice; (data are represented as

mean ± SEM)). (B) shows the total amounts of

divided OT-I T cells found in the respective lymph

nodes. The results from one out of four experi-

ments with similar outcome are shown.
in Tg+/Rag1�/� as compared to Tg�/Rag1�/�mice (35% ver-

sus 10%, Figure 7A, left panel, and data not shown). Moreover,

when we increased the numbers of Rac donor mice further and

transferred pooled T cells from ten mice into only three recipi-

ents, two out of three mice receiving T cells from Rac donors,

but not those from Tg� donors, developed simultaneous eye

and skin disease 3 weeks after transfer. Histological analyses

of eye and skin sections showed strong inflammatory infiltration

(Figures 7B and 7C, upper panels). Further analysis revealed in-

filtration of CD8+ T cells, but absence of CD4+ T cells in both skin

and eyes of the same animals (Figures 7B and 7C, lower panels).

In addition, many of the CD8+ T cells in skin were positive for

Ki67, indicating proliferative expansion of CD8+ T cells in situ

(Figure 7C, low panel).

Together, these data show that absence of crosstolerization to

apoptotic self-Ag allows autoreactive peripheral T cells to accu-

mulate. These cells can contribute to autoimmune disease when

activated under the appropriate conditions.

DISCUSSION

The actual contribution of crosstolerance to the control of self-

reactive T cells in physiological situations is currently unclear.

We have investigated this question by using a model of adoptive

transfer of autoreactive T cells as well as analyzing endogenous

polyclonal T cells in crosspresentation-deficient mice. Our study

establishes a functional role for extrathymic crosspresentation of

TSA to circulating peripheral CD8+ T cells and identifies DCs as

key players in peripheral tolerance induction.

We employed mice with a DC-specific defect in uptake of ex-

ogenous and apoptotic proteins due to inhibition of the GTPase

Rac1 (Kerksiek et al., 2005; Neuenhahn et al., 2006). DCs from

Rac1�/�Rac2�/�mice have a general defect in T cell priming be-

cause they are unable to interact optimally with CD4+ T cells

(Benvenuti et al., 2004). In contrast, DCs from Rac mice utilized

in this study displayed normal capacities to prime CD8+ and

CD4+ T cell responses to HSV and peptide Ag. However, cell-as-

sociated (Kerksiek et al., 2005), soluble, or DEC-205-targeted

protein was not efficiently crosspresented by Rac DCs. In addi-
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tion to reduced uptake of antigenic material, steps further down-

stream of Ag internalization may also be Rac dependent. For

example, we detected no defect in DEC-205 internalization

(data not shown), although crosspresentation of DEC205-OVA

was severely reduced. Therefore, N17Rac may inhibit actin-

dependent events during receptor internalization and trafficking

such as constriction of vesicle necks and scission from the

plasma membrane that we were unable to detect in our assay (re-

viewed in Kaksonen et al. [2006]). In addition, actin-independent

steps of crosspresentation may also be defective in Rac mice. It

has been shown that the NAPDH-oxidase NOX2 generates reac-

tive oxygen species (ROS) to maintain alkalinization of the phag-

osomal lumen in DCs. This preserves epitopes for crosspresenta-

tion (Savina et al., 2006), and activated Rac1 is essential for

NOX2-complex function (Hordijk, 2006; Segal, 2005). Accord-

ingly, DCs from Vav1�/� mice, deficient for a regulator of Rac1,

do not produce ROS and fail to crosspresent particulate Ag, but

show functional Ag uptake (Graham et al., 2007). Taken together,

althoughdirect MHC class I and class II presentation were normal,

Rac mice displayed a selective crosspresentation deficiency.

Uptake and presentation of self-Ag by DCs also play important

roles in central tolerance induction of self-reactive CD4+ but not

CD8+ thymocytes (Gallegos and Bevan, 2004). Unexpectedly,

we found that negative selection of self-reactive CD4+ OT-II thy-

mocytes was normal in Rac mice. Thymic DCs probably pick up

TSA from thymic medullary epithelial cells (mTECs) (Kyewski and

Klein, 2006). However, neither the mechanism of TSA transfer

nor the stability or form of thymic self-Ag are currently known.

If TSA was transferred as cell-associated protein from apoptotic

cells, we might expect an uptake defect for Rac DCs. However,

although mTEC might die after 2–3 weeks (Gaebler et al., 2007), it

is unknown whether TSA transfer to thymic DCs depends on

mTEC apoptosis. In addition, DCs are able to pick up membrane

from live cells for Ag presentation (Harshyne et al., 2003). If TSA

was secreted or otherwise released by mTECs, distinct uptake

mechanisms could simultaneously bring TSA into separate intra-

cellular compartments responsible for presentation to CD4+ or

CD8+ T cells, similar to peripheral DCs (Burgdorf et al., 2007).

Here, the pathway for crosspresentation via MHC class I may
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be more dependent on Rac1 function than the MHC class II path-

way. Taken together, our findings revealed that Rac mice dis-

played a normal ability to negatively select self-reactive CD4+

and CD8+ thymocytes.

Most importantly, the Rac model allowed the investigation of

endogenous, peripheral self-reactive CD8+ T cells, accumulating

Figure 5. Defective Peripheral Tolerance Induction in Rac-RIP Mice

(A) Wild-type, RIP-mOVA, and CD11c-(N17) Rac1xRIP-mOVA (Rac-RIP) mice

received 8 3 106 purified Ly5.1+ OT-I T cells i.v. and were then treated and

monitored.

(B) PBL from all mice were analyzed by flow cytometry 3, 14, and 31 days later

for the presence of CD8+Ly5.1+OT-I T cells. Numbers indicate the percentage

of OT-I T cells of PBL (cells in gate).

(C) The respective frequencies of OT-I T cells of CD8+ PBL are shown (left

panel, average [of n = 2] ± SD). All mice were immunized with 4 3 106

HSV-OVA i.v. 2 days later (day 33) as described in Figure 1. Changes in fre-

quencies of OT-I T cells were monitored 4 (day 37; [B] and [C], right panel)

and 5 (day 38; [C], right panel) days after immunization.

(D) In parallel, we monitored all mice for the onset of diabetes by measuring

glycosuria (nd = not detectable). Bar graphs represent the average of n = 3

mice (data are represented as average ± SD). One of three experiments with

similar results is shown.
due to defective crosspresentation. The finding that anti-CD40

was insufficient to induce autoimmunity confirms observations

with transferred Ld-alloreactive 2C TCR-transgenic T cells,

which also could not be primed by anti-CD40 treatment (Buhl-

mann et al., 2007). In contrast, for OT-I and P14 T cells, anti-

CD40 was sufficient to induce autoimmunity (Roth et al., 2002;

Vezys and Lefrancois, 2002). These discrepancies could either

be due to the different nature and amounts of Ag expressed in

the respective models or the different affinities of TCR (OT-I,

P14 versus 2C). Likewise, low-avidity polyclonal T cells from

Vß5xRIP-mOVA mice also could not be triggered to cause diabe-

tes in RIP-mOVA mice, when global viral or bacterial inflamma-

tory stimuli were employed (Zehn and Bevan, 2006). Only when

the critical density of Ag-MHC class I complexes is increased

by infection with OVA-expressing bacteria do low-avidity T

cells become autoaggressive (Zehn and Bevan, 2006). Because

the specific cognate TSA recognized by Rac T cells are currently

unknown, further work is ongoing to identify these TSA in Rac

mice.

When Treg cells were depleted, Rac T cells could expand

homeostatically in lymphopenic Rag1�/�mice and autoimmunity

could be developed. Under these conditions, T cells gain mem-

ory phenotypes but do not normally transit through an activated

effector cell state (Cho et al., 2000; Goldrath et al., 2004). How-

ever, if amounts of IL-2 and IL-15 rise (Cho et al., 2007), or if they

recognize cognate Ag, T cell effector functions may develop.

Rac T cells became effector cells in Rag1�/�mice, probably be-

cause they encountered self-Ag during expansion. For efficient

crosspriming of CD8+ T cells, CD4+ T cells must recognize Ag

on the same DC that crosspresents cellular Ag to the CD8+ T

cells (Bennett et al., 1997). The development of true memory

function by CD8+ T cells expanding in lymphopenic hosts also

requires CD4+ T cell help (Hamilton et al., 2006). Therefore, au-

toreactive Rac-CD8+ T cells are certainly CD4 dependent.

Because Rac mice perform normal negative selection, peripheral

tolerance to apoptotic TSA might be similarly defective for CD4+

and CD8+ T cells.

Neither the identity of TSA nor the tissues that are normally

protected by crosstolerance are known. The accumulation of

self-reactive peripheral T cells in Rac mice argues for an impor-

tant role of crosstolerance in vivo. It could account for tolerance

to self-proteins that are not efficiently expressed or presented in

the thymus (Kyewski and Klein, 2006). Several studies have in-

vestigated the possibility that DCs express and directly present

TSA. However, the conclusions from these studies are contra-

dictory. Expression of genes encoding for TSA such as proinsu-

lin, glutamic acid decarboxylase 65, myelic basic protein, thyroid

peroxidase, and pancreatic Ag IA-2 was found in CD11c+ cells

from peripheral blood and spleen (Garcia et al., 2005). In con-

trast, another study did not find expression of insulin, GAD65,

and IA-2 in DCs (Derbinski et al., 2001). Therefore, it remains to

be clarified whether and which DCs express and directly present

certain TSA or whether they are entirely dependent on uptake of

exogenous TSA. The accumulation of self-specific CD8+ T cells

in Rac mice indicates an important role for crosspresentation of

exogenous TSA by DCs. Certain TSA epitopes such as signal se-

quences (Wolkers et al., 2004) or TSA with insufficient stability

might be ‘‘ignored’’ by peripheral crosstolerance. Hence, CD8+

T cell tolerance to these epitopes must rely on direct MHC class
Immunity 28, 521–532, April 2008 ª2008 Elsevier Inc. 527
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Figure 6. Accumulation of Peripheral, Self-

Reactive CD8+ T Cells in Rac Mice

Peripheral T cells were isolated from Thy1.2+ Rac-

mice (Tg+) or Thy1.2+ nontransgenic littermates

(Tg�), CFSE-labeled, and transferred i.v. into

Thy1.1+ congenic recipients (WT). As shown in

(A), 15 days later, spleens and lymph nodes (not

shown) were analyzed for the presence of

CD8+Thy1.2+ donor T cells. CD8+Thy1.2+ T cells

were further analyzed for proliferation by gating

on cells that had diluted their CFSE label (lower

panel). (B) shows total numbers of CD8+Thy1.2+

donor T cells were enumerated from spleens (n =

3–5 mice per group, data are represented as aver-

age ± SD). One out of three experiments with sim-

ilar outcome is shown. As shown in (C), mice re-

ceived 100 mg CD40 mAb (FGK) i.p. on day �2

and day �1. On day 0, 8 3 106 T cells from Rac-

Tg+ or -Tg� mice were transferred as described

in (A). Mice were monitored 23 week for signs of

disease such as fur ruffling, alopecia, diarrhea,

hunched posture (not shown), and weight loss (av-

erage [of n = 5] ± SD).
I presentation, as executed for central tolerance induction by

thymic epithelial cells (Kyewski and Klein, 2006) and for periph-

eral tolerance induction by lymph node stromal cells (Lee et al.,

2007) and parenchymal tissue cells, encountered on the normal

migratory pathways of naive CD8+ T cells (Cose et al., 2006).

Another factor possibly limiting crosstolerization by DCs is the

accessibility of tissues. Recent studies have shown that toler-

ance against proinsulin-2 does not depend on the thymus be-

cause a thymic proinsulin-2 gene deficiency was insufficient to

induce diabetes (Faideau et al., 2006). In this study, an increase

of insulin-specific T cells was observed, and peripheral tolerance

mechanisms were sufficient to prevent autoimmunity (Faideau

et al., 2006). However, in another study, lack of expression of

the interphotoreceptor retinoid-binding protein gene in the thy-

mus caused spontaneous eye-specific autoimmune disease

(DeVoss et al., 2006). Because the eye is an immunologically

privileged site, there may be limited access for DCs to acquire

eye-specific TSA for crosstolerance induction. These studies ex-

emplify that if thymic imperfection allows the generation of autor-

eactive T cells, peripheral crosstolerance may correct this failure

only if TSAs are accessible. However, when tissues share TSAs,

then crosstolerance induced by the more accessible tissue

might also protect the immune-privileged one. In contrast, TSA

that are neither expressed in the thymus nor part of the ‘‘cross-

presentation repertoire’’ of DCs might be of particular interest

for the induction of tumor-specific T cell-immunity, because

they have been spared from tolerance (Speiser et al., 1997).

Interfering with the TSA-uptake function of DCs renders pe-

ripheral crosstolerance inefficient, allowing survival of TSA-reac-

tive CD8+ T cells that menace peripheral tissues and increase the

risk for autoimmune attack. Therefore, pathways controlling

uptake of TSA by DCs might turn out to be an Achilles heel of

the immune system for functional peripheral crosstolerance

induction.
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EXPERIMENTAL PROCEDURES

Mice

CD11c-(N17)Rac1 mice have been described previously (Kerksiek et al., 2005)

and were backcrossed to C57BL/6 for at least 14 generations. C57BL/6,

C57BL/6.Thy1.1+, OT-I (CD8+ TCR-Tg specific for the ovalbumin [OVA]-de-

rived SIINFEKL peptide) and OT-I in Ly5.1, and Rag1�/� mice were originally

obtained from the Jackson Laboratory. RIP-mOVA mice expressing transgenic

OVA under control of the rat insulin promoter in the pancreas were a kind gift

from W. Heath, Australia. All mice were bred and maintained at the animal facil-

ities of the Institute for Immunology (LMU, Munich) in accordance with estab-

lished guidelines of the Regional Ethics Committee of Bavaria.

Adoptive Transfer and CFSE Labeling of OT-I Cells

OT-I T cells were prepared from lymph nodes and spleens of transgenic mice.

In brief, spleen and lymph nodes were harvested, and single-cell suspensions

were prepared. Spleen red blood cells were removed with ACK buffer (0.15 M

NH4Cl, 1 mM KHCO3, and 0.1 mM Na2EDTA [pH 7.4]) for 4 min at room tem-

perature, and OT-I cells were isolated by negative selection (>96% purity,

CD8+ T cell isolation kit, MACS LS Separation Columns, Miltenyi Biotec). En-

riched cells were labeled with CFSE (5 mM per 1 to 50 3 106 cells/ml, Molecular

Probes) for 10 min at 37�C. After determining the percentage of OT-I TCR-

transgenic T cells by flow cytometry, we injected the indicated numbers

of T cells into the lateral tail veins of age- and sex-matched recipient mice or

cultured them in vitro under the conditions described.

Immunizations

Mice were immunized i.v. via the tail vein with the indicated dose of Ag in 200 ml

PBS (100 mg or 5 mg OVA-protein and 10 mg LPS [Sigma]; 10 mg SIINFEKL-

peptide and 10 mg LPS). A total of 10 mg of aDEC205-OVA antibody conjugate

(Bonifaz et al., 2002) and 10 mg LPS was injected i.v. via the tail vein. Replica-

tion incompetent Herpes simplex virus expressing OVA (TOH-OVA) has been

described previously (Lauterbach et al., 2004) and was injected at 4 3 106 par-

ticles per mouse i.v. Virus-like particles (VLPs) have been described previously

(Storni et al., 2004) and were used at a concentration of 150 mg per subcuta-

neous injection.

Monitoring of Mice for Signs of Illness

Glucosuria in RIP-mOVA mice was determined daily with test stripes (Diabur

5000, Roche Diagnostic). Signs of illness following T cell transfer were defined
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Figure 7. T Cells from Rac Donors Induce Early Onset of Illness in Rag1-Deficient Mice

(A) Rag1�/� mice received 8 3 106 CD25-depleted T cells from either Rac-Tg+ (left panel, open symbols, dotted line) or -Tg� (left panel, filled symbols) donors.

Mice were monitored for illness 23 a week (fur ruffling, alopecia, diarrhea, hunched posture, weight loss, etc.). Kinetics of weight loss is shown from one exper-

iment (n = 5 mice per group) out of three with a similar outcome (left panel). Pooled data from two experiments (total of n = 10 mice per group) show a significant

difference (p = 0.0256) in the percentage of mice exhibiting early onset of illness in mice that received T cells from Rac donors (right panel, Tg+/Rag1�/�).

(B) In the upper panels, 8 3 106 T cells pooled from 10 Tg� or Tg+ donors were transferred into 3 Rag1�/� recipients. Three weeks after transfer, two out of three

mice developed simultaneous eye and skin disease. The upper-left panel shows H & E reference staining of Tg�/Rag1�/� control mice, showing normal corneal

(C) and retinal (R) architecture; the upper-right panel shows a representative section of Tg+/Rag1�/� diseased eye with disruption of the corneal epithelium and

thickening of corneal stroma and marked infiltration of leucocytes, with H & E staining. The lower-left panel shows anti-CD8-staining and hematoxylin counter-

stain of Tg�/Rag1�/�mice, in the cornea; no CD8+ cells were detectable. The lower-right panel shows infiltration of the corneal epithelium (CE) and stroma (CS)

by CD8+ cells (violet) in Tg+/Rag1�/� mice eyes. Counterstaining with anti-CD3 revealed that all CD3+ cells were also CD8+ (not shown).

(C) In the upper panels, H & E staining of ears from Tg�/Rag1�/� (left) or Tg+/Rag1�/� (right). Only in the Tg+/Rag1�/� ears were inflammatory infiltration with

epidermal participation and crusting detectable. In the second row (CD8), these infiltrations contained CD8+ cells. In the third row (CD8/CD4/DAPI), CD4+ cells

could not be detected. As shown in the bottom row, several CD8+ T cells were Ki67 positive, indicating proliferation in situ.
as the following: diarrhea (determined by the presence of fecal matter on the

perianal region), hunched posture, fur ruffling, alopecia, weight loss, respira-

tory distress, and skin or eye lesions.

Histology

Formalin fixed eyes were embedded in paraffin (Microm). Ag retrieval was per-

formed at 99�C for 15 min in 0.1 M EDTA-NaOH buffer (pH 8.8). We used rat

anti-mouse CD8 hybridoma supernatant (clone CD8-2) for CD8 staining and

rat anti-mouse CD3 hybridoma (clone CD3-12, both antibodies kindly pro-

vided by E. Kremmer, Helmholtz Center, Munich, Germany) for CD3 staining

overnight at 4�C in a humidified chamber. After washing, sections were incu-
bated with biotinylated secondary Ab; goat anti rat IgG (Linaris) for 1 hr. After

washing, peroxidase-conjugated streptavidin was applied (Vectastain ABC-

Elite:HRP kit; Linaris). Binding was visualized with the Vector HRP-substrate

kit VIP, which results in violet color (Linaris). Subsequently, the slides were

counterstained with Mayer’s hematoxylin (Microm) and mounted. Images

were obtained with a Leica microscope DMR (Leica), and digital images

were obtained with the Leica DFC320 R2 camera.

For cryosections, skin was embedded in O.C.T. medium (no. 4583; Miles)

and snap frozen; 5 mm sections were cut with a cryostat (Jung Frigocut

2800 E, Leica). Sections were air-dried overnight, acetone fixed (�20�C for

10 min), and air-dried for a minimum of 12 hr. Sections were rehydrated for
Immunity 28, 521–532, April 2008 ª2008 Elsevier Inc. 529



Immunity

Dendritic Cells Mediate Peripheral Crosstolerance
15 min in PBS containing 0.25% BSA and blocked for 15 min in PBS containing

0.25% BSA and 10% mouse serum. Abs, rat anti-mouse CD8-Alexa 488 (53-

6.7), rat anti-mouse CD 4-biotin (L3T4), and mouse anti-human Ki67-PE (B56)

(all purchased from BD PharMingen) diluted in blocking buffer were added di-

rectly onto the sections and incubated for 30 min. After washing, sections were

either incubated with Streptavidin-Alexa 555 (Molecular Probes) and/or with

DAPI (1 mg/ml, Molecular Probes) and directly mounted in Fluoromount (South-

ern Biotechnology Assoc.). Sections were analyzed on an Olympus BX41TF-5

microscope (Olympus CELL-BND-F software) equipped with F-View II Digital

Mikro camera (Olympus).

In Vivo CTL Assay

This assay was performed as described previously (Coles et al., 2002). Synge-

neic C57BL/6 spleen cells were depleted of erythrocytes by osmotic lysis.

Cells were washed and split into two populations. One population was pulsed

with 10�6 M OVA257-264-peptide for 1 hr at 37�C, washed, and labeled with

a high concentration of CFSE (1.6 mM) (CFSEhigh cells). The second control

population was labeled with a low concentration of CFSE (0.24 mM) (CFSElow

cells). For i.v. injection, an equal number of cells from each population

(CFSEhigh and CFSElow) were mixed, such that each mouse received a total

of 2 3 107 cells. At the indicated time points, mice were sacrificed and spleen

and lymph nodes were removed. Cell suspensions were analyzed by flow

cytometry; �5 3 105 CFSE-positive cells were collected for analysis. Pep-

tide-pulsed and unpulsed target cells were recognized according to their

different CFSE intensities. To calculate specific lysis, we used the following

formulas: ratio = (percentage CFSElow/percentage CFSEhigh); percentage-

specific lysis = (1 � (ratio unprimed/ratio primed) 3 100).

Bone-Marrow Chimera Model for OT-I Negative Selection

Bone-marrow cells were collected from femurs and tibiae of donor mice

6–8 weeks of age. Red blood cells were removed with ACK buffer (0.15 M

NH4Cl, 1 mM KHCO3, and 0.1 mM Na2EDTA [pH 7.4]) for 4 min at room tem-

perature, and 5 3 106 cells were injected i.v. into lethally irradiated (split dose

day�2 and day 0: 450 rad) recipient mice (age 10–15 weeks). Upon irradiation,

and for 5 weeks after, chimeric mice were given drinking water supplemented

with neomycin trisulfate (Sigma). Chimeras were analyzed 8–9 weeks after

reconstitution.

Rac T Cell Transfer

C57BL/6 in Thy1.1 mice received 1 3 107 CFSE-labeled (5 mM per 1 to 50 3

106 cells/ml), pan T cells (purified to >96% T cells, with the Pan T cell isolation

kit, Miltenyi Biotec) from either Tg� (Thy1.2+) or Tg+ (Thy1.2+) mice. Mice were

sacrificed 15 days later, and spleen and lymph nodes were analyzed for pro-

liferation and activation of Thy1.2+ donor T cells determined by CFSE dilution

and high expression levels of CD44 and low levels of CD62L.

Rag1�/� donors received 8 3 106 CD25-depleted, purified pan T cells from

the indicated donors via the tail vein. Donor T cells were harvested from spleen

and lymph nodes, and pan T cells were negatively selected by magnetic sep-

aration as described above. The T cells were then depleted of CD25+ cells with

the CD25 microbead kit (<0.5% CD25+ cells final, Miltenyi Biotec). After cell

transfer, mice were monitored two times a week for signs of illness as

described above.

In Vitro Stimulation

Mice were immunized i.v. with 5 mg OVA in PBS or PBS alone. The next day,

animals were sacrificed and spleens were removed and digested in a solution

of LiberaseCI and DNase I (Roche) in serum-free medium for 20 min at 37�C.

Spleens were passed through a 70 mM nylon mesh strainer and CD8+ DCs

were magnetically isolated with the MACS CD8+ dendritic cell isolation kit (Mil-

tenyi Biotec). The cell preparations routinely consisted of 60%–80% CD11c+,

CD8+ cells with <5% of the cells being CD11c+, CD8�. Purity was lower after

protein immunization of all groups. Equal numbers of CD8+ DCs were cocul-

tured in vitro with CFSE-labeled OT-I in Ly5.1 T cells (prepared as described

above) at DC:T cell ratios of 1:2.5 and 1:5 in the presence of GM-CSF for 4 days.

Antibodies and Multimers

The following Ab or reagents from BD PharMingen were used for flow cytom-

etry: CD4-PerCP (RM4-5), CD8a-FITC and -PerCP (53-6.7), CD44-FITC and
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APC (IM7), CD62L-APC (MEL-14), Va2-PE (B20.1), Vb5-FITC (MR9-4), IFN-

g-PE (XMG1.2), isotype-control rat IgG1-PE (R3-34), Streptavidin-APC,

Ly5.1-FITC and -biotin (A20), CD8-APC (CT-CD8a), CD44-PE (IM7.8.1),

CD90.1-PE (53-2.1), and CD16/32 (2.4G2). PE-conjugated MHC class I multi-

mer reagents (H2-Kb/SIINFEKL; H2-Kb/gB; H2Kb/B8R 20-27) were pur-

chased from Proimmune. aDEC205-OVA antibody conjugate was produced

as previously described (Bonifaz et al., 2002).

Staining of Cells for Flow Cytometry

Staining of surface molecules was performed with 1 3 106 to 6 3 106 cells in

cold staining buffer for 30 min at 4�C (15 min at room temperature in the dark

when MHC multimers were used). Dead-cell exclusion was attained by incuba-

tion with 1 mg/ml ethidium monoazide bromide (EMA, Molecular Probes) prior

to surface staining or the addition of 0.8 mg/ml propidium iodide (PI, Sigma).

Intracellular staining for cytokines was performed with the Cytofix/Cytoperm

kit (PharMingen). Flow cytometry was performed with a FACSCaliburor FAC-

Saria (Becton Dickinson), and data were analyzed with FlowJo software

(Tree Star).

Stimulation of Cytokine Production by Epitope-Specific T Cells

Splenocytes (2 3 108/well in 2 ml RPMI medium) were incubated with 1 mg/ml

SIINFEKL peptide (Neosystems) and 1 ml/ml Golgiplug (PharMingen) in a 24-

well plate for 5 hr at 37�C. Stimulated cells (5 3 107) were washed and then in-

cubated for 20 min with 250 mg/ml Fc block (2.4G2) (PharMingen) and 1mg/ml

EMA on ice. After washing, surface molecules were stained for 20 min on ice.

Cells were washed and resuspended in Cytofix and incubated for 20 min on

ice. Cells were then washed in Perm wash buffer, and intracellular staining

(0.4 mg/ml anti-IFN-g mAb) was performed in Permwash buffer for 20 min

on ice.

Statistical Analysis

Data were analyzed with Student’s t test for all analysis except the Kaplan

Meier plot for which the log rank test was employed. A p value of p < 0.05

was considered to be significant.

SUPPLEMENTAL DATA

Two figures are available at http://www.immunity.com/cgi/content/full/28/4/

521/DC1/.
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