181 research outputs found

    The Distribution of the Elements in the Galactic Disk III. A Reconsideration of Cepheids from l = 30 to 250 Degrees

    Full text link
    This paper reports on the spectroscopic investigation of 238 Cepheids in the northern sky. Of these stars, about 150 are new to the study of the galactic abundance gradient. These new Cepheids bring the total number of Cepheids involved in abundance distribution studies to over 400. In this work we also consider systematics between various studies and also those which result from the choice of models. We find systematic variations exist at the 0.06 dex level both between studies and model atmospheres. In order to control the systematic effects our final gradients depend only on abundances derived herein. A simple linear fit to the Cepheid data from 398 stars yields a gradient d[Fe/H]/dRG = -0.062 \pm 0.002 dex/kpc which is in good agreement with previously determined values. We have also reexamined the region of the "metallicity island" of Luck et al. (2006). With the doubling of the sample in that region and our internally consistent abundances, we find there is scant evidence for a distinct island. We also find in our sample the first reported Cepheid (V1033 Cyg) with a pronounced Li feature. The Li abundance is consistent with the star being on its red-ward pass towards the first giant branch.Comment: 66 pages including tables, 12 figures, Accepted Astronomical Journa

    Accurate Fundamental Parameters or A, F, and G-type Supergiants in the Solar Neighbourhood

    Full text link
    The following parameters are determined for 63 Galactic supergiants in the solar neighbourhood: effective temperature Teff, surface gravity log g, iron abundance log e(Fe), microturbulent parameter Vt, mass M/Msun, age t and distance d. A significant improvement in the accuracy of the determination of log g and, all parameters dependent on it, is obtained through application of van Leeuwens (2007) re-reduction of the Hipparcos parallaxes. The typical error in the log g values is now +-0.06 dex for supergiants with distances d < 300 pc and +-0.12 dex for supergiants with d between 300 and 700 pc; the mean error in Teff for these stars is +-120 K. For supergiants with d > 700 pc parallaxes are uncertain or unmeasurable, so typical errors in their log g values are 0.2-0.3 dex. A new Teff scale for A5-G5 stars of luminosity classes Ib-II is presented. Spectral subtypes and luminosity classes of several stars are corrected. Combining the Teff and log g with evolutionary tracks, stellar masses and ages are determined; a majority of the sample has masses between 4 Msun and 15 Msun and, hence, their progenitors were early to middle B-type main sequence stars. Using Fe ii lines, which are insensitive to departures from LTE, the microturbulent parameter Vt and the iron abundance log e(Fe) are determined from high-resolution spectra. The parameter Vt is correlated with gravity: Vt increases with decreasing log g. The mean iron abundance for the 48 supergiants with distances d < 700 pc is log e(Fe)=7.48+-0.09, a value close to the solar value of 7.45+-0.05, and thus the local supergiants and the Sun have the same metallicity.Comment: 12 pages, 9 figures. Will be published at MNRA
    • …
    corecore