24 research outputs found

    A 28,000 Years Old Cro-Magnon mtDNA Sequence Differs from All Potentially Contaminating Modern Sequences

    Get PDF
    Background: DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans. Methodology/Principal Findings: We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. Conclusions/Significance:: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of earl

    Genetic analysis of the skeletal remains attributed to Francesco Petrarca

    Get PDF
    Abstract We report on the mitochondrial DNA (mtDNA) analysis of the supposed remains of Francesco Petrarca exhumed in November 2003, from the S. Maria Assunta church, in Arquà Padua (Italy) where he died in 1374. The optimal preservation of the remains allowed the retrieval of sufficient mtDNA for genetic analysis. DNA was extracted from a rib and a tooth and mtDNA sequences were determined in multiple clones using the strictest criteria currently available for validation of ancient DNA sequences, including independent replication. MtDNA sequences from the tooth and rib were not identical, suggesting that they belonged to different individuals. Indeed, molecular gender determination showed that the postcranial remains belonged to a male while the skull belonged to a female. Historical records indicated that the remains were violated in 1630, possibly by thieves. These results are consistent with morphological investigations and confirm the importance of integrating molecular and morphological approaches in investigating historical remains.

    Genetic analysis of the skeletal remains attributed to Francesco Petrarca

    Get PDF
    Abstract We report on the mitochondrial DNA (mtDNA) analysis of the supposed remains of Francesco Petrarca exhumed in November 2003, from the S. Maria Assunta church, in Arquà Padua (Italy) where he died in 1374. The optimal preservation of the remains allowed the retrieval of sufficient mtDNA for genetic analysis. DNA was extracted from a rib and a tooth and mtDNA sequences were determined in multiple clones using the strictest criteria currently available for validation of ancient DNA sequences, including independent replication. MtDNA sequences from the tooth and rib were not identical, suggesting that they belonged to different individuals. Indeed, molecular gender determination showed that the postcranial remains belonged to a male while the skull belonged to a female. Historical records indicated that the remains were violated in 1630, possibly by thieves. These results are consistent with morphological investigations and confirm the importance of integrating molecular and morphological approaches in investigating historical remains.

    Rubinstein-Taybi Syndrome: spectrum of CREBBP mutations in Italian patients

    Get PDF
    BACKGROUND: Rubinstein-Taybi Syndrome (RSTS, MIM 180849) is a rare congenital disorder characterized by mental and growth retardation, broad and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms and increased risk of tumors. RSTS is caused by chromosomal rearrangements and point mutations in one copy of the CREB-binding protein gene (CREBBP or CBP) in 16p13.3. To date mutations in CREBBP have been reported in 56.6% of RSTS patients and an average figure of 10% has ascribed to deletions. METHODS: Our study is based on the mutation analysis of CREBBP in 31 Italian RSTS patients using segregation analysis of intragenic microsatellites, BAC FISH and direct sequencing of PCR and RT-PCR fragments. RESULTS: We identified a total of five deletions, two of the entire gene and three, all in a mosaic condition, involving either the 5' or the 3' region. By direct sequencing a total of 14 de novo mutations were identified: 10 truncating (5 frameshift and 5 nonsense), one splice site, and three novel missense mutations. Two of the latter affect the HAT domain, while one maps within the conserved nuclear receptor binding of (aa 1–170) and will probably destroy a Nuclear Localization Signal. Identification of the p.Asn1978Ser in the healthy mother of a patient also carrying a de novo frameshift mutation, questions the pathogenetic significance of the missense change reported as recurrent mutation. Thirteen additional polymorphisms, three as of yet unreported, were also detected. CONCLUSION: A high detection rate (61.3%) of mutations is confirmed by this Italian study which also attests one of the highest microdeletion rate (16%) documented so far

    The Microcephalin Ancestral Allele in a Neanderthal Individual

    Get PDF
    Background: The high frequency (around 0.70 worlwide) and the relatively young age (between 14,000 and 62,000 years) of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1) locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans.1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. Methodology/Principal Findings: Here we report the first PCR amplification and high- throughput sequencing of nuclear DNA at the microcephalin (MCPH1) locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy). We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH

    Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/ mTOR signaling

    Get PDF
    PEL is a B-cell non-Hodgkin lymphoma, occurring predominantly as a lymphomatous effusion in body cavities, characterized by aggressive clinical course, with no standard therapy. Based on previous reports that PEL cells display a Warburg phenotype, we hypothesized that the highly hypoxic environment in which they grow in vivo makes them more reliant on glycolysis, and more vulnerable to drugs targeting this pathway. We established here that indeed PEL cells in hypoxia are more sensitive to glycolysis inhibition. Furthermore, since PI3K/Akt/mTOR has been proposed as a drug target in PEL, we ascertained that pathway-specific inhibitors, namely the dual PI3K and mTOR inhibitor, PF-04691502, and the Akt inhibitor, Akti 1/2, display improved cytotoxicity to PEL cells in hypoxic conditions. Unexpectedly, we found that these drugs reduce lactate production/extracellular acidification rate, and, in combination with the glycolysis inhibitor 2-deoxyglucose (2-DG), they shift PEL cells metabolism from aerobic glycolysis towards oxidative respiration. Moreover, the associations possess strong synergistic cytotoxicity towards PEL cells, and thus may reduce adverse reaction in vivo, while displaying very low toxicity to normal lymphocytes. Finally, we showed that the association of 2-DG and PF-04691502 maintains its cytotoxic and proapoptotic effect also in PEL cells co-cultured with human primary mesothelial cells, a condition known to mimic the in vivo environment and to exert a protective and pro-survival action. All together, these results provide a compelling rationale for the clinical development of new therapies for the treatment of PEL, based on combined targeting of glycolytic metabolism and constitutively activated signaling pathways

    Hyperpolarized NMR of plant and cancer cell extracts at natural abundance

    Get PDF
    International audienceNatural abundance C-13 NMR spectra of biological extracts are recorded in a single scan provided that the samples are hyperpolarized by dissolution dynamic nuclear polarization combined with cross polarization. Heteronuclear 2D correlation spectra of hyperpolarized breast cancer cell extracts can also be obtained in a single scan. Hyperpolarized NMR of extracts opens many perspectives for metabolomics

    A highly divergent mtDNA sequence in a Neandertal individual from Italy

    Get PDF
    Neandertals are documented in Europe and Western Asia from about 230,000 to 29,000 years ago. Analyses of mitochondrial DNA (mtDNA) from Neandertal samples and other analyses appear incompatible withthe hypothesis that Neandertals are direct ancestors of modern Europeans. However, there are broad geographic gaps in the sampling of Neandertal DNA diversity. Here, we describe the sequence of the first mitochondrial hypervariable region(HVR1) in a new specimen from Monti Lessini (MLS) in Northern Italy. This sequence contains several previously unidentified nucleotide substitutions and comparison to five other complete HVR1 sequences reveals a previously undetected amount of genetic variation among Neandertals. The MLS sequence documents a greater diversity among the European Neandertals than previously estimated. In particular, the analysis of Neandertal genetic diversity confirms that Neandertals were separated from modern humans by several fixed mtDNA differences. However, their internal diversity was rather large. Even members of the same population, such as FE1 and FE2, could differ substantially, and haplotypes in geographically extreme populations also seem to be genetically differentiated. This raises questions concerning the demographic and evolutionary history of Neandertals
    corecore