5 research outputs found

    Age-Related Metabolic Pathways Changes in Dental Follicles: A Pilot Study

    Get PDF
    Aging is not a matter of choice; it is our fate. The “time-dependent functional decline that affects most living organisms” is coupled with several alterations in cellular processes, such as cell senescence, epigenetic alterations, genomic instability, stem cell exhaustion, among others. Age-related morphological changes in dental follicles have been investigated for decades, mainly motivated by the fact that cysts and tumors may arise in association with unerupted and/or impacted teeth. The more we understand the physiology of dental follicles, the more we are able to contextualize biological events that can be associated with the occurrence of odontogenic lesions, whose incidence increases with age. Thus, our objective was to assess age-related changes in metabolic pathways of dental follicles associated with unerupted/impacted mandibular third molars from young and adult individuals. For this purpose, a convenience sample of formalin-fixed paraffin-embedded (FFPE) dental follicles from young (<16 y.o., n = 13) and adult (>26 y.o., n = 7) individuals was selected. Samples were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS)-based untargeted metabolomics. Multivariate and univariate analyses were conducted, and the prediction of altered pathways was performed by mummichog and Gene Set Enrichment Analysis (GSEA) approaches. Dental follicles from young and older individuals showed differences in pathways related to C21-steroid hormone biosynthesis, bile acid biosynthesis, galactose metabolism, androgen and estrogen biosynthesis, starch and sucrose metabolism, and lipoate metabolism. We conclude that metabolic pathways differences related to aging were observed between dental follicles from young and adult individuals. Our findings support that similar to other human tissues, dental follicles associated with unerupted tooth show alterations at a metabolic level with aging, which can pave the way for further studies on oral pathology, oral biology, and physiology

    Evaluation of Rice Bran as a Supplement for Production of Bioethanol by Saccharomyces cerevisiae

    No full text
    ABSTRACT There is an increase in researches to create alternative fuels through the use of biomass and agroindustrial lignocellulosic residues. The present study proposes the use of rice bran as source of energy with the potential to enhance bioethanol production. Using different concentrations of cells (1-5 g.L–1) and rice bran (2.5-7.5 g.L –1) with Saccharomyces cerevisiae, a factorial design 22 was carried out. The nutrient source provided by rice bran affects the substrate conversion in product (Yp/s) response in a quadratic form, but its linear form showed no significant effect (α = 0.05). When it comes to means, the best results were obtained for 12 h and for fermentation medium 2 (23.320 g.L–1 of ethanol), which contained the highest rice bran concentration and the lowest initial cell concentration. Medium 3, consisting of 2.5 g.L–1 and 5 g.L –1 of rice bran and cells, respectively, showed the lowest K s (4.434 g.L–1)

    The environmental risks of pharmaceuticals beyond traditional toxic effects: Chemical differences that can repel or entrap aquatic organisms

    No full text
    The aim of the present study was to assess the risks of four different pharmaceutical active compounds (PhACs; diazepam, metformin, omeprazole and simvastatin). Acute and chronic toxicities were studied using the bacterium Aliivibrio fischeri and the microalgae Pseudokirchneriella subcapitata; while the repellency and attractiveness were assessed by avoidance tests with juvenile Cypirinus carpio using a multi-compartmented exposure system. Omeprazole was found to be an acutely toxic drug (EC50: 0.015 mg/L), while the other PhACs, except simvastatin, showed some chronic toxicity. Regarding avoidance, simvastatin and omeprazole induced an escape response for 50% of the fish population at 0.032 and 0.144 mg/L, respectively; contrarily, diazepam was attractive, even at lethal concentrations, representing a dangerous trap for organisms. The toxicity of the PhACs seemed not to be directly related to their repellency; and the mode of action seems to determine the repellency or attractiveness of the chemicals. Contamination by PhACs is of concern due to the environmental disturbance they might cause, either due to their acute and chronic toxicity (at the individual level), repellency (at the ecosystem level: loss of local biodiversity) or attraction to potentially lethal levels.This research was funded by: Coordination of Superior Level Staff Improvement (CAPES); National Council for Scientific and Technological Development (CNPq); Foundation for Research Support of the State of Minas Gerais (FAPEMIG) and the Federal University of Minas Gerais (UFMG). C.V.M. Araújo received the Ramón y Cajal contract (RYC-2017-22324) from the Spanish Ministry of Science and Innovation.Peer reviewe

    Molecular epidemiology of Mycobacterium tuberculosis in Brazil before the whole genome sequencing era: a literature review

    No full text
    Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Programa de Pós-Graduação em Pesquisa Clínica e Doenças Infecciosas. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Bacteriologia e Bioensaios em Micobactérias. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular Aplicada a Micobactérias. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio Grande do Sul. Programa de Pós-Graduação em Biologia Celular e Molecular. Porto Alegre, RS, Brasil / Secretaria Estadual de Saúde do Rio Grande do Sul. Centro Estadual de Vigilância em Saúde. Centro de Desenvolvimento Científico e Tecnológico. Porto Alegre, RS, Brasil.Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública Sergio Arouca. Centro de Referência Professor Hélio Fraga. Laboratório de Referência Nacional para Tuberculose e outras Micobacterioses. Rio de Janeiro, RJ, Brasil.Universidade do Estado do Pará. Instituto de Ciências Biológicas e da Saúde. Pós-Graduação Biologia Parasitária na Amazônia. Belém, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade do Estado do Pará. Instituto de Ciências Biológicas e da Saúde. Pós-Graduação Biologia Parasitária na Amazônia. Belém, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Laboratório de Geoprocessamento. Ananindeua, PA, Brasil.International Institute of Information Technology. Department of Data Science. Bangalore, India.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Secretaria Estadual de Saúde do Rio Grande do Sul. Centro Estadual de Vigilância em Saúde. Centro de Desenvolvimento Científico e Tecnológico. Porto Alegre, RS, Brasil.Universidade de São Paulo. Faculdade de Medicina. Departamento de Clínica Médica. Ribeirão Preto, SP, Brasil.Universidade de São Paulo. Faculdade de Medicina. Departamento de Clínica Médica. Ribeirão Preto, SP, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular Aplicada a Micobactérias. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Paulo de Góes. Laboratório de Micobactérias. Rio de Janeiro, RJ, Brasil.Universidade Federal de São Paulo. Departamento de Microbiologia, Imunologia e Parasitologia. São Paulo, SP, Brasil.Instituto Adolfo Lutz. Centro de Bacteriologia. Núcleo de Tuberculose e Micobacterioses. São Paulo, SP, Brasil.Universit e Paris-Saclay. Ecologie Systematique Evolution. Centre National de la Recherche Scientifique. AgroParisTech, Orsay, France.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Bacteriologia e Bioensaios em Micobactérias. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular Aplicada a Micobactérias. Rio de Janeiro, RJ, Brasil.Coordenação Geral de Vigilância das Doenças de Transmissão Respiratória de Condições Crônicas. Brasília, DF, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular de Microrganismos. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Paulo de Góes. Laboratório de Micobactérias. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular Aplicada a Micobactérias. Rio de Janeiro, RJ, Brasil.Universidade do Estado do Pará. Instituto de Ciências Biológicas e da Saúde. Pós-Graduação Biologia Parasitária na Amazônia. Belém, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Molecular-typing can help in unraveling epidemiological scenarios and improvement for disease control strategies. A literature review of Mycobacterium tuberculosis transmission in Brazil through genotyping on 56 studies published from 1996-2019 was performed. The clustering rate for mycobacterial interspersed repetitive units - variable tandem repeats (MIRUVNTR) of 1,613 isolates were: 73%, 33% and 28% based on 12, 15 and 24-loci, respectively; while for RFLP-IS6110 were: 84% among prison population in Rio de Janeiro, 69% among multidrug-resistant isolates in Rio Grande do Sul, and 56.2% in general population in São Paulo. These findings could improve tuberculosis (TB) surveillance and set up a solid basis to build a database of Mycobacterium genome
    corecore