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Aging is not a matter of choice; it is our fate. The “time-dependent functional decline

that affects most living organisms” is coupled with several alterations in cellular

processes, such as cell senescence, epigenetic alterations, genomic instability, stem cell

exhaustion, among others. Age-related morphological changes in dental follicles have

been investigated for decades, mainly motivated by the fact that cysts and tumors may

arise in association with unerupted and/or impacted teeth. The more we understand

the physiology of dental follicles, the more we are able to contextualize biological

events that can be associated with the occurrence of odontogenic lesions, whose

incidence increases with age. Thus, our objective was to assess age-related changes in

metabolic pathways of dental follicles associated with unerupted/impacted mandibular

third molars from young and adult individuals. For this purpose, a convenience sample

of formalin-fixed paraffin-embedded (FFPE) dental follicles from young (<16 y.o.,

n = 13) and adult (>26 y.o., n = 7) individuals was selected. Samples were analyzed

by high-performance liquid chromatography-mass spectrometry (HPLC-MS)-based

untargeted metabolomics. Multivariate and univariate analyses were conducted, and

the prediction of altered pathways was performed by mummichog and Gene Set

Enrichment Analysis (GSEA) approaches. Dental follicles from young and older individuals

showed differences in pathways related to C21-steroid hormone biosynthesis, bile acid

biosynthesis, galactose metabolism, androgen and estrogen biosynthesis, starch and

sucrose metabolism, and lipoate metabolism. We conclude that metabolic pathways

differences related to aging were observed between dental follicles from young and

adult individuals. Our findings support that similar to other human tissues, dental follicles

associated with unerupted tooth show alterations at a metabolic level with aging, which

can pave the way for further studies on oral pathology, oral biology, and physiology.
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INTRODUCTION

Dental follicles, also referred to as dental sacs, comprise a
defined structure with a remarkable role in periodontogenesis
and tooth eruption [1–4]. Classically, the definition of dental
follicle includes the ectomesenchymal tissue derived from the
neural crest that involves the tooth during development (i.e.,
odontogenesis) [5]. By a surgical definition, however, the term
“dental follicle” comprises both the ectomesenchymal tissue
around the developing tooth as well as the reduced enamel
epithelium [6]. In cases when tooth eruption does not occur,
the dental follicle remains attached to the coronal portion
of the unerupted or impacted tooth [7]. Some pathological
changes are described in this context, and are often age-
dependent, as in the case of squamous and mucous cell
metaplasia/prosoplasia. They involve molecular changes, such
as increased expression of cell proliferation markers and lower
expression of pro-apoptotic markers, mainly attributed to the
epithelial component of this dental sac [8–12]. Some of these
molecular and morphological alterations are considered as early
signs of events that give rise to odontogenic lesions, such as
developmental cysts and tumors. However, this is known to be
a rare event [13].

Aging is a complex process that involves alterations in
many cellular processes resulting in/from altered cell-cell
interactions, loss of cell proteostasis, telomeric shortening, cell
senescence, mitochondrial dysfunction, epigenetic alterations,
genomic instability, stem cell exhaustion, among others
[14]. The multi-level complexity underlying the aging
process involves interactions between nucleic acids and
proteins and is also influenced by environmental factors,
constituting the aging phenotype [15]. Metabolomics is an
emerging field among the so-called “-omics sciences” and
correspond to a promising tool to understand the phenotype of
cells, tissues, organs, and organisms in different conditions
[16–18]. Thus, by exploring the metabolome, set of all
metabolites in complex organisms, phenotypic changes
related to biological functions can be revealed, especially
when subtle changes in the concentration of metabolites can
be targeted [19]. Some effective studies have been conducted
in this context, unveiling the impact of aging on different
tissues [15]. By exploring the aging physiology, the course
of diseases in which the incidence increases with age, such
as Alzheimer’s disease, rheumatic disorders, cardiovascular,
metabolic diseases, and, a prominent example, cancer,
can be understood [20].

In the present study, we investigated the altered
metabolic pathways in dental follicles of third-molar
teeth from young and adult individuals by an untargeted
metabolomics approach. We aimed to provide a list of
predicted altered pathways, which can pave the way for
further research that may use dental follicles/dental sacs
as a model to understand aging, tooth eruption, bone
physiology, and epithelium-mesenchymal interactions,
as well as other phenomena that can be assessed in this
peculiar tissue.

MATERIALS AND METHODS

Patients and Tissue Specimens
A convenience sample (n = 20) of formalin-fixed paraffin-
embedded (FFPE) tissue samples was retrieved from the archives
of the Oral Pathology Service at Universidade Federal de
Minas Gerais (UFMG, Brazil). Dental sacs associated with
impacted/completely unerupted mandibular third molars with
diagnosis confirmed by the histopathological analysis were used.
The histopathological diagnosis of all samples was confirmed by
three investigators (RSG, CCG, and VCB). After searching the
files and retrieving the samples from the archives, we sought to
select the best cases from the youngest and the oldest patients
possible, based on tissue availability as well as histological
features. Thus, samples showing intense inflammatory infiltrate
or bony trabeculae were excluded since both could potentially
affect the findings and/or metabolite extraction protocol.
Samples with the clinical diagnosis of odontogenic cysts were
also excluded.

Sample Preparation
Briefly, ∼10mg of tissue was obtained from FFPE specimens.
Thick tissue sections of 20µm were obtained using a manual
microtome and collected into previously weighed microfuge
tubes. The first two sections were discharged to remove
potential surface contaminants. Tissues were then deparaffinized
by four sequential incubations with cold xylene (Merck,
Darmstadt, HE, Germany), each followed by centrifugations
(15,000×g, 15min, 4◦C). Residual solvent was dried using a
dry bath incubator at 37◦C and then weighed. The metabolite
extraction solution was composed of a mixture of HPLC
grade methanol:water:chloroform (3:1:1, v/v/v) (Sigma-Aldrich,
San Luis, MO, USA). The volume of extraction solution was
normalized per biomass of each tissue pellet (1 mg:20 µL
of solution). Samples were homogenized using an ultrasonic
bath for 10min and centrifuged. The supernatant was filtered
in nylon syringe-filters (13mm diameter, 0.22µm pore size),
collected into inserts in glass vials, and sealed after sample
preparation. A quality control (QC) sample was prepared by
pooling 10 µL of each sample. Samples were stored at −80◦C
until analysis.

High-Performance Liquid
Chromatography-Mass Spectrometry
Extracts were examined by HPLC-MS (Shimadzu HPLC System,
LC 20A, Kyoto, Japan) coupled with a Bruker Quadrupole Time-
of-Flight (QToF) mass spectrometer (Bruker micrOTOF QII,
Billerica, MA, USA). A reverse phase, C18, 5 cm × 2.1mm
i.d., 1.9µm chromatography column (Supelco Discovery HS,
Bellefonte, PA, USA) was used for metabolite separation at 40◦C.
The HPLC was operated according to the following parameters:
injection volume = 10 µL; flow rate = 0.3 mL/min. HPLC
solvents were taken as follows: A, MilliQ Water with 0.1% (v/v)
formic acid; and B, acetonitrile (ACN, Sigma-Aldrich, San Luis,
MO, USA) with 0.1% (v/v) formic acid (Sigma-Aldrich, San Luis,
MO, USA) for positive ionization mode; and A, MilliQ water;
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and B, ACN for negative ionization mode. The separation was
conducted with gradient mode, in which the elution range was
given as follows: 25–95% B (20min); 95% B (3min); 95–20%B
(2min); and 20% B for 5min. Mass spectra were acquired using
positive and negative-mode electrospray ionization (ESI+ and
ESI-, respectively). The capillary voltage was 4,500V for ESI+
and 3,500V for ESI-. Nitrogen was used as cone and desolvation
gas with a pressure of 2 bar and a flow rate of 7.0 L/h. The
source temperature was 100◦C, and the desolvation temperature
was 180◦C. Nitrogen was also used as collision gas and it was
generated by a nitrogen generator (NM32LA, Peak Scientific, SP,
Brazil). A full scan from 90–1200m/z was obtained using sodium
formate as calibrator. The QC sample was reinjected multiple
times after each five sequential sample injections.

Data Preprocessing
Raw data were converted into .mzXML open format with
MSConvert software (ProteoWizard, v.3.0). After conversion,
optimization of parameters for data treatment was performed
using QC data files. Data were optimized separately for ESI+
and ESI- in IPO package version 1.16.0 (Libiseller et al.,
2015) in R Statistic workplace (R version 3.6.2). A two-step
workflow was employed: the first consisted of optimization
of initial default XCMS parameters followed by optimization
of the whole set of parameters for peak picking and retgroup
functions. We edited the minfrac and minsample parameters
(set to 0.7 and 2, respectively), since they contribute to the
concordance of m/z features within each group, increasing
analytical robustness [21]. Optimized values of each parameter
are shown in Supplementary File 1. Files were then processed
on the XCMS package [22] in R Statistical workplace. Features
extracted at <2.5min and >20min were removed. Duplicity was
also checked by Pearson’s correlation of features coeluted within
a 2.5min interval, considering a 5 ppm mass error (for this
purpose, r > 0.7 correlation of peak intensities were considered
as features duplicities and were removed from the data matrix).
After this preprocessing step, the data matrix consisted of 3,530
and 475m/z features, in ESI+ and ESI- modes, respectively.

Data Processing and Statistical Analysis
Multivariate analysis was conducted on MetaboAnalyst 4.0
online platform [23, 24]. Principal Component Analysis (PCA)
and Partial Least Square Discriminant Analysis (PLS-DA)models
were constructed based on data input after data filtering and
missing value imputation. Features presenting more than 20%
of missing values were excluded, and the residual missing values
were replaced by the half of minimum value of intensity for each
feature; data filtering based on relative SD (features presenting
RSD > 25% for the peak intensities in the QCs were excluded)
and interquartile range (IQR), eliminating features with poor
analytical consistency and non-informative variables. Data were
then median normalized, log-transformed, and Pareto-scaled for
multivariate analysis. For univariate statistical analysis, the same
filters and normalizations were applied except for the Pareto
scaling. Shapiro-Wilk normality test, followed by Independent
Samples t-Test (Welch’s t-Test) (accounting for Levene’s test for
equality of variances) or Mann-Whitney U Tests were conducted

on IBM SPSS Statistics 26 (IBM Corporation, v.26.0.0.0) when
applicable. False Discovery Rate (FDR) was applied to employ the
Benjamini-Hochberg method and a cutoff of 5% was considered.

Pathway Enrichment
As a functional interpretation of global metabolomics data can be
challenging [25], we used the MetaboAnalyst 4.0 module called
“MS Peaks to Pathways,” which integratesmummichog and Gene
Set Enrichment Analysis (GSEA) algorithms to predict changes
in metabolic pathways in given conditions [26]. Mummichog
[27] is an algorithm based on Over Representation Analysis
(ORA), which assumes that a certain degree of random errors
during individual peak assignment will not change the collective
behavior jointly determined by all metabolites involved in the
pathways [28]. This algorithm tests if statistically significant
peaks of a given list are enriched compared with null models
drawn from the user input list. GSEA [29] is a cutoff-free
method that evaluates the overall differences between two
distributions based on Kolmogorov–Smirnov tests and favors the
detection of subtle and consistent alterations that can be lost by
ORA approaches.

For this purpose, a five-column table was built consisting
data of 2,068 remaining features retained after data filtering
of MetaboAnalyst for both ionization modes. The input table
presented the headers “m.z” for mass-to-charge ratios; “r.t” for
retention time; “p-values” from both Independent Samples t-Test
or Mann-Whitney U Test (raw p-values, non-FDR corrected);
“mode” indicating the ionization mode (positive or negative);
and “t.score” calculated for each feature. A mass error of 10
ppm was used since it seemed more reasonable with QToF
mass resolution, as Ms peaks to Pathways developers encourage
inputs derived from high-resolution analytical platforms, such as
Orbitrap or other Fourier transform mass spectrometry family.
For mummichog analysis, a p-value cutoff of 0.05 was used. The
library selected was the Human MFN Model, which is manually
curated and originated from different sources (KEGG, BiGG, and
Edinburgh Model) [30].

RESULTS

Sample Characterization
Thirteen samples were included in the young group of patients
(13–16 years old, median = 15 years old), and seven in the
adult group (26–38 years old, median = 28 years old). Although
we originally intended to have equal numbers of samples in
both groups, samples from dental follicles of older patients
were difficult to obtain, as most of the surgical procedures to
remove unerupted thirds molars occur in adolescents. The young
group was comprised of six boys and seven girls. Four females
and three males formed the adult group. The main histological
findings are shown in Figure 1. Not all samples exhibited evident
epithelial lining, but the presence of islets of the odontogenic
epithelium was frequently observed, especially among younger
individuals (Figure 1c). We observed the presence of reduced
enamel epithelium in 6/13 samples in the young group of
patients. Squamous epitheliumwas present in 3/7 samples among
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FIGURE 1 | Histological features of dental follicles associated with unerupted mandibular third molars. (a) Reduced enamel epithelium lining connective tissue of

dental follicle (x20 magnification). (b) Stratified squamous epithelial lining with focal thickening (x10 magnification). (c) Typical islets of the odontogenic epithelium were

commonly observed in dental follicles from young individuals (x10 magnification). Slides were hematoxylin-eosin stained.

adult individuals and was also present in focal areas of 2/13
samples from young patients.

Quality Assessment and Statistical
Evaluation
Principal Component Analysis indicated good analytical stability
during the HPLC-MS run, for both positive and negative
ionization modes (Supplementary File 2). PLS-DA analysis
showed some degree of group separation, but the generated
models could not be interpreted as predictive and were
considered overfitted (Supplementary File 2). The univariate
analysis resulted in a total of 287 molecular features statistically
significant (p < 0.05, non-significant after FDR correction) from
a total of 2,068 features in both positive and negative ionization
modes. Only two m/z features were retained after 5% correction
of FDR (m/z 647.2999, adjusted p-value < 0.0001; m/z 379.1334,
adjusted p-value < 0.0001, both detected on ESI+mode). Since a
singlem/z feature canmatchmultiple compounds [27], they were
not individually examined.

Pathway Enrichment
We carried out pathway enrichment based on mummichog and
its integration with the GSEA approach, currently available
within the “MS peaks to pathways” module of MetaboAnalyst
4.0. It is important to emphasize that the prediction algorithms
were solely used as tools to identify metabolic pathways,
with no purpose of annotating metabolites. Mummichog

v.2 was used, and it includes retention time information to
increase the confidence and robustness of potential compound
matches [30], thus resulting in 248 matched compounds
(Supplementary File 3). By executing the same analysis
without retention time information (mummichog v.1), 1,355
compounds were matched and resulted pathways were reported
(Supplementary File 4). For the sake of clarity, the discussion
will be based on the results of the analysis that accounted for
retention time analysis, although we cannot entirely discharge
any other results. This analysis identified several pathways,
including the C-21 steroid hormone biosynthesis, the bile
acid biosynthesis, the galactose metabolism, the androgen
and estrogen metabolism, the starch and sucrose and lipoate
metabolic pathways (Gamma-p-values < 0.05) in mummichog
approach. Tables 1, 2 provide the results from the mummichog
approach alone and integrated with GSEA, respectively. Figure 2
shows scatter plots derived from each analysis.

DISCUSSION

In the present study, we aimed to assess the metabolic alterations
related to aging in dental sacs of impacted or unerupted
mandibular third molars. These are the teeth that are the most
frequently associated with odontogenic lesions development [13,
31] and are the last tooth to achieve occlusal plane, generally
erupting between 17 and 26 years [13]. Considering that most
of the third molar extraction surgeries are performed at a
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TABLE 1 | Results of the mummichog pathway analysis.

Enriched pathways Pathway total Hits.total Hits.sig. Expected FET EASE Gamma-p value

C21-steroid hormone biosynthesis

and metabolism

8 8 4 1.0256 0.0066 0.0423 0.0436

Bile acid biosynthesis 11 11 4 1.4103 0.0250 0.1016 0.0443

Galactose metabolism 3 3 2 0.3846 0.0360 0.2956 0.0447

Androgen and estrogen

biosynthesis and metabolism

3 3 2 0.3846 0.0360 0.2956 0.0447

Starch and Sucrose Metabolism 3 3 2 0.3846 0.0360 0.2956 0.0447

Lipoate metabolism 1 1 1 0.1282 0.1171 1 0.0477

Vitamin D3 (cholecalciferol)

metabolism

2 2 1 0.2564 0.2214 1 0.0522

Vitamin E metabolism 3 3 1 0.3846 0.3141 1 0.0569

Fatty acid metabolism 4 4 1 0.5128 0.3964 1 0.0616

Linoleate metabolism 7 7 1 0.8974 0.5914 1 0.0766

Prostaglandin formation from

arachidonate

8 8 1 1.0256 0.6420 1 0.0818

Glycosphingolipid metabolism 9 9 1 1.1538 0.6868 1 0.0871

The results of this module consist of the total number of hits, the raw p-value (Fisher’s Exact Test, FET and EASE, its more conservative version), and Gamma-adjusted p-value, which

means Fisher’s p-values calculated using the list of significant features, adjusted for the null distribution of permutation p-values. “Pathway total” represents the total number of empirical

compounds in the pathways, and “hits total” the number of empirical compounds hits from input data of users. “Expected” means the expected number of empirical compound hits in

the pathway.

TABLE 2 | Integrated results of the mummichog and Gene Set Enrichment Analysis (GSEA) Pathway.

Enriched Pathways Total Size Hits Hits Sig. Mummichog p values GSEA p values Combined p values

Galactose metabolism 3 3 2 0.0360 0.0714 0.0179

Starch and Sucrose Metabolism 3 3 2 0.0360 0.0714 0.0179

C21-steroid hormone biosynthesis and metabolism 8 8 4 0.0066 0.4362 0.0198

Bile acid biosynthesis 11 11 4 0.0250 0.1979 0.0313

Androgen and estrogen biosynthesis and metabolism 3 3 2 0.0360 0.7143 0.1201

Vitamin D3 (cholecalciferol) metabolism 2 2 1 0.2215 0.2698 0.2281

Lipoate metabolism 1 1 1 0.1172 0.5192 0.2312

Prostaglandin formation from arachidonate 8 8 1 0.6421 0.125 0.2827

Fatty Acid Metabolism 4 4 1 0.3964 0.4286 0.4711

Vitamin E metabolism 3 3 1 0.3141 0.6857 0.5461

Glycosphingolipid metabolism 9 9 1 0.6868 0.3656 0.5981

Linoleate metabolism 7 7 1 0.5914 0.5568 0.6951

GSEA considers the overall ranks of features without using a significant cutoff. The module uses Fisher’s method to combine raw p-values of mummichog and GSEA approaches.

younger age [32, 33], it was difficult to retrieve dental follicle
samples from patients above 30 years old. We observed the
presence of reduced enamel epithelium in 6/13 samples in
the young group of patients. Typical small islets and strands
of odontogenic epithelium were most commonly observed in
the young group, agreeing with the literature [7]. Squamous
epithelium was present in 3/7 samples among adult individuals.
If squamous metaplasia of the reduced enamel epithelium
can represent an early sign of pathological change in dental
follicles is debatable [8–12, 34], as tissues can naturally undergo
morphological changes to adapt to new circumstances [7,
35–38]. The relevance of this debate relies on the absence
of a consensus in the clinical practice guidelines justifying
prophylactic surgical removal of asymptomatic disease-free
impacted teeth [13].

Differences between the young and adult dental follicle
groups were observed in many metabolic pathways, such as
the C21-steroid hormone biosynthesis and metabolism, the
bile acid biosynthesis, the galactose metabolism, the androgen
and estrogen biosynthesis and metabolism, the starch and
sucrose metabolism, and the lipoate metabolism. Although
we were not able to observe which metabolic pathways had
decreased or increased activities between experimental groups,
these metabolic pathways were already described in the aging
context and will be briefly discussed. It is important to point
out that puberty is, likewise, a complex process coupled to
several hormonal and physiological changes [39], which must be
kept in mind when dealing with metabolomic studies assessing
young patients and may explain, for example, the fact that we
found differences in androgen and estrogen biosynthesis and
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metabolism between our experimental groups. We encourage
further validation studies on larger sample size and based on
targeted approaches.

C21-steroid hormone biosynthesis and metabolism comprises
progesterone-aldosterone and progesterone-cortisol/cortisone
axes that mediate a wide variety of biological processes such as
reproductive function, sexual development, electrolyte balance,
blood pressure, and stress responses [40]. Steroidal metabolome
was previously demonstrated to be influenced by sex, age, and
circadian cycle [40–42].

Bile acids (BAs) comprise a group of important physiological
agents for cholesterol metabolism, intestinal nutrient absorption,
biliary secretion of lipids, toxic metabolites, and xenobiotics
[43]. Through activation of signaling pathways triggered by the
activation of G-protein-coupled receptors (GPCRs) or nuclear
bile acid receptors (including farnesoid-X receptor, FXR, also
known as NR1H4), bile acids have been shown to regulate
not only their own synthesis and enterohepatic recirculation,
but also regulate triglyceride, cholesterol, energy, and glucose
homeostasis [44]. Changes in serum and blood plasma levels
were already found to be age-related and sex-specific [43, 45].
Interestingly, genes related to the bile secretion pathway were
reported to act in tooth germs development of rats at RNA and
protein levels [46].

The main pathway of galactose metabolism in humans
involves the conversion of galactose into glucose by galactokinase
and galactose-1-phosphate uridyl-transferase for glycolysis [47,
48]. In animal models, long-term D-galactose exposure induces
the acquisition of an aging phenotype, which has been recognized
as being similar to those in naturally agedmice and rats [49]. Age-
induced animals exhibit increased reactive oxygen species (ROS)
formation and decreased antioxidant enzyme activity in the
brain, poor immune responses, cognitive dysfunctions, weakened
motor function, and shortened lifespan [48, 50], mainly the
effects of the accumulation of senescent cells in naturally
aged organisms [20, 51–53]. In these models, the impacts of
impaired galactose metabolism have already been studied on
the brain, liver, lungs, heart, kidney, skin, reproductive systems,
and others [54]. Other carbohydrates cause oxidative stress
by activation of mitochondrial metabolism of glucose, leading
to ROS generation [55]. In this context, starch and sucrose
metabolism may also be related. In this case, ROS is generated
through mitochondrial respiratory chain enzymes, xanthine
oxidases, lipoxygenases, cyclooxygenases, nitric oxide synthases,
and peroxidases [55].

Lipoate metabolism plays a key role in mitochondrial
functions [56]. Lipoate is a covalently bound cofactor essential for
five redox reactions in humans: four 2-oxoacid dehydrogenases
and the glycine cleavage system (GCS). Two enzymes are derived
from the energy metabolism, α-ketoglutarate dehydrogenase and
pyruvate dehydrogenase; and three are derived from the amino
acid metabolism, branched-chain ketoacid dehydrogenase, 2-
oxoadipate dehydrogenase, and the GCS [57]. Lipoate is the
conjugate base of lipoic acid (LA), and the most prevalent
form of LA under physiological conditions. It presents a
highly negative reduction potential, increases the expression

FIGURE 2 | Scatter Plots of Pathway Enrichment Analysis provided by

mummichog (A) and by its integration with GSEA (B). The color and size of

each circle correspond to its p-value and enrichment factor, respectively.

Darker tones indicate more statistically relevant predicted pathways. The size

of each dot represents the ratio between significant pathway hits and the

expected number of compound hits within the pathways.

of antioxidant enzymes, and participates in the recycling of
vitamins C and E. Due to these properties, LA is called the
“universal antioxidant” [58]. LA displays anti-apoptotic and
anti-inflammatory properties in in vivo and in vitro studies.
Importantly, it has been shown that LA reverses the age-
associated loss of neurotransmitters and their receptors, which
can underlie its effects on cognitive functions [59].

Cellular, genetic, endocrine, molecular, and environmental
factors were also involved in tooth eruption (as we are dealing
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with unerupted and impacted teeth) and were not entirely
covered in our study design. Nutritional status, body mass index
(BMI), socioeconomic status, and others should be stratified
in further studies with larger sample size, since these are
important factors affecting the metabolome and, accordingly,
tooth eruption [60–63]. Moreover, causes of primary failure of
eruption or delayed tooth eruption are not fully understood, but
disruptions and/or total failure in the ability of dental follicles
leading to bone resorption throughout the gubernacular canal
are discussed [60, 61, 64]. From this perspective, metabolic
alterations in dental follicles may lead tooth eruption to fail and
should be explored.

The more deeply we understand tissue physiology, the more
we become capable of reframing several biological questions,
changing the status quo, and casting light into new perspectives.
Recently, from genetic approaches, it has been observed that
normal, pathology-free tissues also can harbor pathological
mutations, some of which are known oncogenes, implicating
a new way to look at genetic alterations [65–67]. Benign
tumors often can exhibit hotspot mutations and still present
indolent clinical behavior [67–69]. Regarding dental follicles,
no hotspot mutations were found until now [70]. Global
profiling of DNA methylation and hydroxymethylation was
also recently explored, and, despite age-related decrease of
global DNA hydroxymethylation found, the biological meaning
of this epigenetic profile change in dental follicles remains
to be elucidated [71].

Genotype-phenotype interactions are complex, and many
variables can elicit different responses at cells, tissues, and
organisms. Metabolomics can bridge the gap, making paradoxes
to be reconciled. Recently, metabolism from a wide variety of
sources (e.g., alcohol and microbial metabolism) was found to
modify DNA and histones and exerts specific effects on cell
biology, systemic physiology, and pathology [72]. Polyphenism,
a peculiar sub-type of phenotypic plasticity present in several
animal species were ultimately proposed to happen in humans
at a metabolic level [73]. In our study, the C21-steroid hormone
biosynthesis, the bile acid biosynthesis, the galactose metabolism,
the androgen and estrogen biosynthesis, the starch and sucrose
and lipoate metabolism have been found to correlate to aging in
dental sacs.

It is important to note that our predictions of altered
metabolic pathways were performed based on untargeted HPLC-
MS-based metabolomics of FFPE tissue samples, which has
just recently become appreciated in the metabolomics field,
inspiring protocols to be developed and optimized [74–76]. In
this provocative and hypothesis-generator study, we shed light on
few aspects of dental follicles physiology and somany othersmust
be discovered. Dental follicles of unerupted/impacted teeth (i.e.,
dental sacs) are a unique tissue in the human body, hermetically
encased within the alveolar bone. They are less exposed to
exogenous environmental agents and are a reminiscence of
tissue interactions dating back to early odontogenesis. We
encourage scientists to consider this valuable tissue as a unique

model and to explore its potential to answer a wide range of
questions in the fields of physiology, developmental biology,
and pathology.
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