7 research outputs found

    Geração de modelo exploratório para o minério de ferro da província mineral de Carajás através da integração de dados multifonte

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Instituto de Geociências, Pós-Graduação em Geologia, 2013.Esta dissertação de mestrado apresenta uma proposta de um modelo exploratório integrado para o minério de ferro de uma porção da Província Mineral de Carajás, denominada Serra Norte, localizada no estado do Pará. Para tanto, efetuou-se o processamento, interpretação, integração de dados aerogeofísicos de alta resolução, IV dados derivados da cartografia geológica na escala 1:20.000, dados estruturais e dados geológicos de cerca de 2.500 furos de sondagem. A análise dos dados gamaespectrométricos, através da composição colorida RGB KeTheU possibilitou a individualização de assinaturas associadas com as formações ferríferas aflorantes, correlacionadas à Formação Carajás, através dos baixos teores dos radioelementos K, eTh e eU. A assinatura do regolito associada com essa unidade mostram platôs enriquecidos em eTh. No entanto, as coberturas lateríticas associadas às rochas máficas, encaixantes da mineralização associadas às Formações Parauapebas e Igarapé Cigarra, são enriquecidas eTh e eU. Rochas sedimentares clásticas, tais como arenitos e conglomerados de matriz arcoseana e que recobrem o Grupo Grão Pará, mostram altos teores de K. Os dados aeromagnéticos permitiram a identificação de feições magnéticas e estruturas interessantes sob o ponto de vista prospectivo. Observa-se que os corpos mineralizados com alto teor em Fe não são mapeados ou apresentam baixo gradiente na amplitude do sinal analítico. Através da análise dos produtos derivados dos dados magnéticos, principalmente na amplitude do sinal analítico de ordem zero, foi verificada a correlação entre as formações ferríferas em superfície e subsuperfície com as anomalias observadas, devido à presença de magnetita e martita. A validação efetuada com os dados dos furos de sondagem e modelo de voxels gerado a partir dos litotipos interceptados na sondagem confirma essa premissa e indica que a magnetita está mais associada ao protominério e a martita e hematita ao minério de ferro. Localmente, pode-se observar a perda do magnetismo em função da oxidação presente no minério de ferro. A gradiometria gravimétrica do sistema Full Tensor Gravity Gradiometry (3D-FTG) mapeia em detalhe a formação ferrífera da área de estudo tanto em superfície quanto em subsuperfície, em função do contraste de densidade com as encaixantes. A componente em Z, denominada Tzz mapeia com alta precisão os corpos mineralizados enquanto que as componentes Txx, Txz, Tyy e Tyz auxiliam no realce do arcabouço estrutural. A interpretação efetuada a partir destes dados foi validada com dados estruturais, dados geológicos coletados em campo e nos testemunhos de sondagem. Como objeto importante deste trabalho foi realizado a comparação entre a metodologia de modelagem tridimensional a partir da inversão dos dados da gravimetria gradiométrica e a modelagem geológica convencional, realizada através da construção de seções transversais e extrusão dos polígonos. Verificou-se que o ajuste qualitativo promovido nos modelos de inversão possui boa aproximação com os modelos geológicos. Como áreas teste foram selecionados os depósitos de N3, N6 e N8. Os resultados obtidos mostraram-se satisfatórios, uma vez que a divergência dos valores das massas de recursos minerais obtidos através das duas metodologias de modelagem ficou na ordem de 20%, o que confere confiabilidade no uso do modelo de inversão nas avaliações preliminares de recursos minerais, trazendo direcionamento e melhor utilização dos recursos humanos e financeiros nos programas exploratórios para minério de ferro na região de Carajás. ______________________________________________________________________________ ABSTRACTThis Master´s thesis proposes an integrated exploration model for iron ore in the Serra Norte portion of Carajás Mineral Province, located in the state of Pará. In order to make this model we processed, interpreted and integrated high resolution airborne geophysical data from 1:20,000 scale geological maps, structural data and geological data from 2,500 drill holes. VI The analysis of the products obtained from gamma ray spectrometric data allowed us to individualize signatures associated with outcropping iron formations related to Carajás Formation, considering low levels of K, eU and eTh radioelements. The regolith signature associated to this unit shows eTh enriched plateaus. However, lateritic mantles related to mafic rocks, host rocks of this mineralization associated with Parauapebas and Igarapé Cigarra formations, are eTh and eU enriched. Clastic sedimentary rocks such as arcosian sandstones and conglomerates that cover Grão Pará Group showed high levels of K. By assessing airborne magnetic data it was possible to identify magnetic features and structures that are interesting from the prospective point of view. We can observe that highly mineralized bodies are not mapped or present a low gradient of amplitude in the analytic signal. By analyzing the results of magnetometric data, especially in the amplitude of the magnetic zero-order analytic signal, and due to the presence of magnetite and martite, we could notice the correlation between surface and subsurface iron formations with the anomalies observed. The validation with boreholes and voxel models using lithotypes obtained during drillings confirms this assumption and shows that magnetite is best associated with protore, and martite and hematite with iron ore. Occasionally the loss of magnetism can be observed due to the oxidation seen in iron ore. The gravimetric gradiometry of the Full Tensor Gravity Gradiometry (3D-FTG) system shows more details on the iron formation design both in the surface and subsurface, due to the density contrast with host rocks. Component Z, called Tzz, maps the mineralized bodies with a high precision, whereas components Txx, Txz, Tvy and Tyz make it possible to highlight the structural framework. The analysis based on these data was validated with structural, geologic data from field and drill holes. An important object of this work was the comparison between the three-dimensional modeling methodology based on the inversion of gradiometric gravimetry data and the conventional geologic modeling, which was done by building cross sections and extrusion of polygons. We observed that the qualitative adjustment done in inversion models is similar to those in the geological models. N3, N6 and N8 deposits were selected as test areas. The results obtained were successful, since the difference of the amounts of mineral resources volumes obtained with both modeling methods was at about 20%. This confirms the reliability of the use of inversion model in the preliminary evaluations of mineral resources and also brings a safe direction and allows a better use of human and financial resources in iron ore exploration programs in Carajás region

    Mapeamento de óxidos de ferro usando imagens landsat-8/OLI e EO-1/hyperion nos depósitos ferríferos da Serra Norte, província mineral de Carajás, Brasil

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOMapping methods for iron oxides and clay minerals, using Landsat-8/Operational Land Imager (OLI) and Earth Observing 1 (EO-1)/Hyperion imagery integrated with airborne geophysical data, were applied in the N4, N5, and N4WS iron deposits, Serra Norte, Carajás, Brazil. Band ratios were achieved on Landsat-8/OLI imagery, allowing the recognition of the main minerals from iron deposits. The Landsat-8/OLI imagery showed a robust performance for iron oxide exploration, even in vegetated shrub areas. Feature extraction and Spectral Angle Mapper hyperspectral classification methods were carried out on EO-1/Hyperion imagery with good results for mapping high-grade iron ore, the hematite-goethite ratio, and clay minerals from regolith. The EO-1/Hyperion imagery proved an excellent tool for fast remote mineral mapping in open-pit areas, as well as mapping waste and tailing disposal facilities. An unsupervised classification was carried out on a data set consisting of EO-1/Hyperion visible near-infrared 74 bands, Landsat-8/OLI-derived Normalized Difference Vegetation Index, Laser Imaging Detection and Ranging-derived Digital Terrain Model, and high-resolution airborne geophysical data (gamma ray spectrometry, Tzz component of gradiometric gravimetry data). This multisource classification proved to be an adequate alternative for mapping iron oxides in vegetated shrub areas and to enhance the geology of the regolith and mineralized areas463331349FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOsem informação307177/2014-9Métodos de mapeamento para óxidos de ferro e argilas, aplicados em imagens Landsat-8/Operational Land Imager (OLI) e Earth Observing 1 (EO-1)/Hyperion e integrados com dados aerogeofísicos, foram testados nos depósitos de ferro de N4, N5 e N4WS, Serra Norte, Carajás, Brasil. Razões de banda foram aplicadas à imagem Landsat-8/OLI, identificando os principais minerais dos depósitos de ferro de N4 e N5. As imagens Landsat-8/OLI mostraram um bom desempenho para a exploração de óxido de ferro, mesmo em áreas vegetadas. Extração de feições espectrais e o método de classificação hiperespectral Spectral Angle Mapper foram aplicados na imagem EO-1/Hyperion com bons resultados para o mapeamento de minério de ferro de alto teor, bem como da proporção de hematita-goethita do minério e de argilas nos regolitos. A imagem EO-1/Hyperion provou ser uma excelente ferramenta para o mapeamento remoto de minerais em áreas de mina a céu aberto, bem como no mapeamento das pilhas de minério. Uma classificação não supervisionada foi aplicada a dados de 74 bandas do visível e infravermelho próximo do EO-1/Hyperion, índice Normalized Difference Vegetation Index derivado do Landsat-8/OLI, Modelo Digital do Terreno derivado do Laser Imaging Detection and Ranging, e dados aerogeofísicos (gamaespectrometria e componente Tzz do dado gravimétrico gradiométrico). Essa classificação de dados multifonte mostrou ser uma alternativa para mapeamento de óxidos de ferro em áreas vegetadas, bem como da geologia do regolito e das áreas mineralizada

    Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil

    Get PDF
    Métodos de mapeamento para óxidos de ferro e argilas, aplicados em imagens Landsat-8/Operational Land Imager (OLI) e Earth Observing 1 (EO-1)/Hyperion e integrados com dados aerogeofísicos, foram testados nos depósitos de ferro de N4, N5 e N4WS, Serra Norte, Carajás, Brasil. Razões de banda foram aplicadas à imagem Landsat-8/OLI, identificando os principais minerais dos depósitos de ferro de N4 e N5. As imagens Landsat-8/OLI mostraram um bom desempenho para a exploração de óxido de ferro, mesmo em áreas vegetadas. Extração de feições espectrais e o método de classificação hiperespectral Spectral Angle Mapper foram aplicados na imagem EO-1/Hyperion com bons resultados para o mapeamento de minério de ferro de alto teor, bem como da proporção de hematita-goethita do minério e de argilas nos regolitos. A imagem EO-1/Hyperion provou ser uma excelente ferramenta para o mapeamento remoto de minerais em áreas de mina a céu aberto, bem como no mapeamento das pilhas de minério. Uma classificação não supervisionada foi aplicada a dados de 74 bandas do visível e infravermelho próximo do EO-1/Hyperion, índice Normalized Difference Vegetation Index derivado do Landsat-8/OLI, Modelo Digital do Terreno derivado do Laser Imaging Detection and Ranging, e dados aerogeofísicos (gamaespectrometria e componente Tzz do dado gravimétrico gradiométrico). Essa classificação de dados multifonte mostrou ser uma alternativa para mapeamento de óxidos de ferro em áreas vegetadas, bem como da geologia do regolito e das áreas mineralizadas.Mapping methods for iron oxides and clay minerals, using Landsat-8/Operational Land Imager (OLI) and Earth Observing 1 (EO-1)/Hyperion imagery integrated with airborne geophysical data, were applied in the N4, N5, and N4WS iron deposits, Serra Norte, Carajás, Brazil. Band ratios were achieved on Landsat-8/OLI imagery, allowing the recognition of the main minerals from iron deposits. The Landsat-8/OLI imagery showed a robust performance for iron oxide exploration, even in vegetated shrub areas. Feature extraction and Spectral Angle Mapper hyperspectral classification methods were carried out on EO-1/Hyperion imagery with good results for mapping high-grade iron ore, the hematite-goethite ratio, and clay minerals from regolith. The EO-1/Hyperion imagery proved an excellent tool for fast remote mineral mapping in open-pit areas, as well as mapping waste and tailing disposal facilities. An unsupervised classification was carried out on a data set consisting of EO-1/Hyperion visible near-infrared 74 bands, Landsat-8/OLI-derived Normalized Difference Vegetation Index, Laser Imaging Detection and Ranging-derived Digital Terrain Model, and high-resolution airborne geophysical data (gamma ray spectrometry, Tzz component of gradiometric gravimetry data). This multisource classification proved to be an adequate alternative for mapping iron oxides in vegetated shrub areas and to enhance the geology of the regolith and mineralized areas

    Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil

    No full text
    ABSTRACT: Mapping methods for iron oxides and clay minerals, using Landsat-8/Operational Land Imager (OLI) and Earth Observing 1 (EO-1)/Hyperion imagery integrated with airborne geophysical data, were applied in the N4, N5, and N4WS iron deposits, Serra Norte, Carajás, Brazil. Band ratios were achieved on Landsat-8/OLI imagery, allowing the recognition of the main minerals from iron deposits. The Landsat-8/OLI imagery showed a robust performance for iron oxide exploration, even in vegetated shrub areas. Feature extraction and Spectral Angle Mapper hyperspectral classification methods were carried out on EO-1/Hyperion imagery with good results for mapping high-grade iron ore, the hematite-goethite ratio, and clay minerals from regolith. The EO-1/Hyperion imagery proved an excellent tool for fast remote mineral mapping in open-pit areas, as well as mapping waste and tailing disposal facilities. An unsupervised classification was carried out on a data set consisting of EO-1/Hyperion visible near-infrared 74 bands, Landsat-8/OLI-derived Normalized Difference Vegetation Index, Laser Imaging Detection and Ranging-derived Digital Terrain Model, and high-resolution airborne geophysical data (gamma ray spectrometry, Tzz component of gradiometric gravimetry data). This multisource classification proved to be an adequate alternative for mapping iron oxides in vegetated shrub areas and to enhance the geology of the regolith and mineralized areas

    Characterization of the crystallographic preferred orientation relationships of the magnetite-hematite-goethite phase transformation during martitization

    No full text
    The most frequent crystallographic preferred orientations developed during the progressive phase transformation of magnetite-hematite-goethite are described and analyzed in two natural samples of banded iron formations from Carajás Mineral Province. Microtextures of martitized grains containing the three phases and the microplaty matrix were analyzed in a scanning electron microscope equipped with a detector for electron backscatter diffraction. For identifying the correlation between magnetite, hematite and goethite lattice and topotaxity during transformation, multiple orientation relationships between the three phases were tested and verified using three-dimensional misorientation analysis. The results show that basal planes of goethite coincide with basal planes of hematite, which coincide with octahedral planes of magnetite. This indicates that transformation between the three minerals happens topotactically, and the oxygen lattice framework is preserved in all members of the reaction as a form of crystallographic memory. As a result of progressive and cyclical changes in oxidation/reduction conditions, an assemblage of high-order orientation relationships is observed and assigned to a complex process of transformation twinning in-between phase transformation of magnetite, hematite and goethite. In the N4WS iron ore deposit, iron oxides/hydroxides from martitized grains work as susceptible markers of environmental changes still in solid state during the diagenetic process.Instituto de Geociências (IG

    Characterization of the Crystallographic Preferred Orientation Relationships of the Magnetite-Hematite-Goethite Phase Transformation during Martitization

    No full text
    The most frequent crystallographic preferred orientations developed during the progressive phase transformation of magnetite-hematite-goethite are described and analyzed in two natural samples of banded iron formations from Carajás Mineral Province. Microtextures of martitized grains containing the three phases and the microplaty matrix were analyzed in a scanning electron microscope equipped with a detector for electron backscatter diffraction. For identifying the correlation between magnetite, hematite and goethite lattice and topotaxity during transformation, multiple orientation relationships between the three phases were tested and verified using three-dimensional misorientation analysis. The results show that basal planes of goethite coincide with basal planes of hematite, which coincide with octahedral planes of magnetite. This indicates that transformation between the three minerals happens topotactically, and the oxygen lattice framework is preserved in all members of the reaction as a form of crystallographic memory. As a result of progressive and cyclical changes in oxidation/reduction conditions, an assemblage of high-order orientation relationships is observed and assigned to a complex process of transformation twinning in-between phase transformation of magnetite, hematite and goethite. In the N4WS iron ore deposit, iron oxides/hydroxides from martitized grains work as susceptible markers of environmental changes still in solid state during the diagenetic process

    Characterization of the Crystallographic Preferred Orientation Relationships of the Magnetite-Hematite-Goethite Phase Transformation during Martitization

    No full text
    The most frequent crystallographic preferred orientations developed during the progressive phase transformation of magnetite-hematite-goethite are described and analyzed in two natural samples of banded iron formations from Carajás Mineral Province. Microtextures of martitized grains containing the three phases and the microplaty matrix were analyzed in a scanning electron microscope equipped with a detector for electron backscatter diffraction. For identifying the correlation between magnetite, hematite and goethite lattice and topotaxity during transformation, multiple orientation relationships between the three phases were tested and verified using three-dimensional misorientation analysis. The results show that basal planes of goethite coincide with basal planes of hematite, which coincide with octahedral planes of magnetite. This indicates that transformation between the three minerals happens topotactically, and the oxygen lattice framework is preserved in all members of the reaction as a form of crystallographic memory. As a result of progressive and cyclical changes in oxidation/reduction conditions, an assemblage of high-order orientation relationships is observed and assigned to a complex process of transformation twinning in-between phase transformation of magnetite, hematite and goethite. In the N4WS iron ore deposit, iron oxides/hydroxides from martitized grains work as susceptible markers of environmental changes still in solid state during the diagenetic process
    corecore