795 research outputs found

    Molecular and cellular logic of cerebral cortex development, evolution, and disease

    Get PDF
    Editorial on the Research Topic Molecular and cellular logic of cerebral cortex development, evolution, and diseas

    From yeast killer toxins to antibiobodies and beyond

    Get PDF
    Antibiobodies are paradigmatic of yeast killer toxin (KT)-like antibodies (KAbs) mimicking the antimicrobial activity of KTs in the frame of the yeast killer phenomenon. Polyclonal, monoclonal and recombinant anti-idiotypic antibiobodies (anti-idiotypic KAbs), internal images of a wide-spectrum KT produced by the yeast Pichia anomala (PaKT), have been produced by immunization with the idiotype of a PaKT-neutralizing monoclonal antibody. Anti-idiotypic KAbs showed microbicidal activity against eukaryotic and prokaryotic pathogenic agents through the interaction with specific KT receptors (KTRs), putatively constituted by beta-glucans. Natural KAbs have been found in animals and humans experimentally or naturally infected by KTR-bearing microorganisms. Recombinant KAb-derived synthetic killer peptides showed further antiviral and immunomodulatory activities. the perspectives of KAbs and killer peptides as potential sources of novel therapeutic agents, and of KTRs and idiotypes as vaccines against infectious diseases are discussed.Istituto Superiore di SanitaUniv Parma, Sez Microbiol, Dipartimento Patol & Med Lab, I-43100 Parma, ItalyUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, Unidade Oncol Expt, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, Unidade Oncol Expt, São Paulo, BrazilWeb of Scienc

    Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders

    Get PDF
    Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease

    You Can't Hide Behind Your Headset: User Profiling in Augmented and Virtual Reality

    Full text link
    Virtual and Augmented Reality (VR, AR) are increasingly gaining traction thanks to their technical advancement and the need for remote connections, recently accentuated by the pandemic. Remote surgery, telerobotics, and virtual offices are only some examples of their successes. As users interact with VR/AR, they generate extensive behavioral data usually leveraged for measuring human behavior. However, little is known about how this data can be used for other purposes. In this work, we demonstrate the feasibility of user profiling in two different use-cases of virtual technologies: AR everyday application (N=34N=34) and VR robot teleoperation (N=35N=35). Specifically, we leverage machine learning to identify users and infer their individual attributes (i.e., age, gender). By monitoring users' head, controller, and eye movements, we investigate the ease of profiling on several tasks (e.g., walking, looking, typing) under different mental loads. Our contribution gives significant insights into user profiling in virtual environments

    A synthetic peptide as a novel anticryptococcal agent.

    Get PDF
    Summary An engineered, killer decapeptide (KP) has been synthesized based on the sequence of a recombinant, single-chain anti-idiotypic antibody (KT-scFv) acting as a functional internal image of a yeast killer toxin. Killer decapeptide exerted a strong fungicidal activity against Candida albicans, which was attributed to peptide interaction with β-glucan. As this polysaccharide is also a critical component of the cryptococcal cell wall, we wondered whether KP was also active against Cryptococcus neoformans, a human pathogen of increasing medical importance. We found that KP was able to kill both capsular and acapsular C. neoformans cells in vitro. Furthermore, KP impaired the production of specific C. neoformans virulence factors including protease and urease activity and capsule formation, rendering the fungus more susceptible to natural effector cells. In vivo treatment with KP significantly reduced fungal burden in mice with cryptococcosis and, importantly, protected the majority of immunosuppressed animals from an otherwise lethal infection. Given the relevance of cryptococcosis in immunocompromised individuals and the inability of conventional drugs to completely resolve the infection, the results of the present study indicate KP as an ideal candidate for further studies on novel anticryptococcal agents

    Physiological tissue-specific and age-related reduction of mouse TDP-43 levels is regulated by epigenetic modifications

    Get PDF
    The cellular level of TDP-43 (also known as TARDBP) is tightly regulated; increases or decreases in TDP-43 have deleterious effects in cells. The predominant mechanism responsible for the regulation of the level of TDP-43 is an autoregulatory negative feedback loop. In this study, we identified an in vivo cause-effect relationship between Tardbp gene promoter methylation and specific histone modification and the TDP-43 level in tissues of mice at two different ages. Furthermore, epigenetic control was observed in mouse and human cultured cell lines. In amyotrophic lateral sclerosis, the formation of TDP-43-containing brain inclusions removes functional protein from the system. This phenomenon is continuous but compensated by newly synthesized protein. The balance between sequestration and new synthesis might become critical with ageing, if accompanied by an epigenetic modification-regulated decrease in newly synthesized TDP-43. Sequestration by aggregates would then decrease the amount of functional TDP-43 to a level lower than those needed by the cell and thereby trigger the onset of symptoms
    • …
    corecore