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Editorial on the Research Topic

Molecular and cellular logic of cerebral cortex development, evolution,

and disease

Among central nervous system structures, the cerebral cortex is widely recognized as

the hub of higher cognitive functions that distinctly characterize humans. With its intricate

network of connections, bewildering variety of cell types, and peculiar multilaminated

structure, the cerebral cortex has undergone a dramatic evolution over time accompanied

primarily by an increase in proportions in relation to body size. Indeed, the gyrification

process is a result of the expansion of novel classes of progenitor cells, especially the outer

radial glia, that produce and provide migration guidance for upper-layer cortical neurons,

many of which are characteristic of the most evolved species and define the neocortex,

underlining its recent phylogenetic origin.

This Research Topic aims to present a comprehensive overview of the latest

advancements in cerebral cortex development. Special attention is given to the role of the

molecular mechanisms that coordinate its assembly, the involvement of non-neuronal cells

in its development and in the acquisition of cognitive abilities, and the evolutionary factors

influencing its cytoarchitecture.

In humans, the neural tube closes ∼30 days post-conception, and the neocortex forms

at the rostral end of the neural tube, through the migration of neurons originating from

proliferative regions near cerebral ventricles of the telencephalon (Sidman and Rakic, 1973;

Marin and Rubenstein, 2003). Migration ensures that layers generate in an inside-out

fashion. Therefore, layer 1 is the most external and the first to be generated, followed by

deep infragranular layer 5 and 6 neurons, then granular layer 4 neurons, and, eventually,

layer 2 and 3 neurons (Cadwell et al., 2019). The ultimate identity of a cortical neuron

and its definitive allocation are attained through the coordinated activation of crucial

transcription factors (Kast and Levitt, 2019). However, the transcriptional profile per semay

not be sufficiently informative, as translation into proteins may be delayed, depending on

mRNA stability, localization, and editing (Zahr et al., 2018; Park et al., 2022). Cremisi and

Vignali focus on the post-transcriptional control attributed to RNA-binding proteins (RBPs)

and microRNAs during corticogenesis. Both RBPs and microRNAs operate as translational

repressors exerting control over various processes, including neural proliferation and
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differentiation (Franzoni et al., 2015), layering (Shu et al., 2017),

and plasticity (Letellier et al., 2014). The authors summarize

how microRNAs (i.e., mir-3607, mir- 122, and mir-137) may

exert a heterochronic effect in cortical neuron maturation by

refining the translated protein’s temporal appearance. This suggests

that microRNAs also have a role in the evolution of the

mammalian brain, facilitating increases in neural progenitor cells

or regulating differentiation and migration (Tomasello et al., 2022),

two processes that eventually sustain the enlargement of cortical

areas that anatomically differentiate gyrencephalic species.

The question of whether proliferative niches persist in the

adult brain has been extensively studied, with the detection of

mitotic events in the adult hippocampus of rodents (Alvarez-

Buylla and Lim, 2004). This area originates from the medial

pallium, which has been thoroughly investigated in mammals and

in anamniotes due to its involvement in learning and navigation

(Salas et al., 2006; Sotelo et al., 2016). Amphibians, the only extant

anamniote tetrapods, express conserved transcription factors

deemed necessary for mammalian hippocampal development

(Moreno et al., 2004; Lust et al., 2022; Woych et al., 2022).

However, little is known about the evolution of the medial

pallium transcriptional profile in amniotes and anamniotes. In

a comparative analysis of the expression pattern of conserved

markers in the amphibian Xenopus laevis and in the amniote

Trachemys scripta, Jiménez and Moreno reported that, despite

cytoarchitectural differences in the layering of the medial pallium,

expression of the gene Prox1 and transcription factors Er81

and Lmo4 was shared with the mammalian dentate gyrus, thus

providing evidence of a common genoarchitectonics supporting

the functional involvement in memory tasks.

Another hallmark of superior brain function is reciprocal

connections between the cerebral cortex and the thalamus. The

cortico-thalamic and thalamo-cortical circuits elaborate essential

tasks such as wakefulness, sensory processing, learning and

memory, plasticity, and consciousness. Disorders that affect higher

brain functions, including schizophrenia, bipolar disorder, and

autism spectrum disorders, impact this system. Angulo Salavarria

et al. summarize cortico-thalamic formation, starting with the

prosomeric model of neurodevelopment (Rubenstein et al., 1994;

Puelles et al., 2013). The cerebral cortex and the thalamus operate as

a single unit, and the establishment of their reciprocal connections

was observed in the human embryo at ∼7.5/8 post-conceptional

weeks. Various models have been used to study the molecular and

cellular mechanisms of cortico-thalamic development. In parallel

to animal models, which remain fundamental for unveiling neural

network establishment, the authors critically discuss advanced in

vitro platforms, e.g., brain organoids and assembloids derived

from human pluripotent stem cells. These innovative tools have

substantial potential for basic research in brain development and

dysfunctions. Furthermore, in silico techniques are used to mimic

composite brain circuitry, simulating realistic inputs/outputs and

clarifying neuron interaction in complex networks.

The arrangement of minicolumns is another crucial aspect

of cortical structure that has undergone evolutionary changes

across different species (Buxhoeveden and Casanova, 2002).

Morphologically defined as strings of interconnected neurons

extending radially across layers 2–6 (Rakic, 1988), minicolumns

are the elemental processing unit of the neocortex and have

been detected in diverse cortical areas. The iterative repetition of

these structures is thought to be fundamental to the neocortical

expansion that has characterized brain size augmentation with

evolution and the increase in computational power (Rakic, 1995,

2008). Here, Wallace et al. explore features of minicolumns

present in the primary visual cortex (V-1) in five mammalian

orders: human and non-human primates (Homo sapiens, Pan

troglodytes, and Gorilla gorilla), rodents (Cavia porcellus, Mus

musculus, and Rattus rattus), Eulipotyphla (Erinaceous europeus),

Artiodactyla (Sus scrofa), and Carnivora (Mustela putorius). The

authors describe a spatial arrangement of minicolumnar bundles of

the primary visual cortex (V-1) in linear or branched strings with

variable intra-layer length, density, and intracolumnar distance,

depending on the species (Wallace et al.). In general, V-1

minicolumns spanned from the base of layer 3 to the white matter

in all great apes including humans, and carnivores, whereas other

mammalian orders had a diverse structure made of repeating

modules or microcolumns with a shorter layer extension and more

irregularity in the spatial patterning. There was a strong association

between the abundance of minicolumns and visual acuity, thus

indicating the existence of a relationship between a numerical

parameter in cortical cytoarchitecture and an indicative function

of the computational power.

Several observations have supported the notion that non-

neuronal cells, specifically astroglia, may affect cortex development

and evolution. Findings included unique characteristics of primate

astroglia, implying a potential contribution to cortical processes

(Oberheim et al., 2009; Zhang et al., 2016; Vasile et al.,

2017; Falcone and Martinez-Cerdeno, 2023). The study by

Degl’Innocenti and Dell’Anno summarized prevalent astrocyte

differences between mice and humans in an overview that

starts with cortical astrogliogenesis and includes morphological

and functional differences. Compared with rodents, human

astrocytes have a higher degree of complexity in size, morphology,

and extension of intercellular interactions, all aspects that

reflect their increased capacity in fostering synaptic transmission

and increasing mouse cognitive capacities upon engraftment

(Han et al., 2013). Human astrocytes are generated from the

ventricular and subventricular zones, similarly to the mouse.

However, human-specific glial precursors have been identified

in the basal or outer radial glia cells, the prominent gliogenic

capacity of which is responsible for the thickening of the

cortex and the development of convolutions (Rash et al.,

2019).

In summary, the findings in this Research Topic offer

a comprehensive overview of factors participating in cortex

development and key divergences that have led to the

acquisition of distinctive species-specific features. These

elements collectively contribute to our understanding of the

intricate processes shaping the cortex and its evolutionary

trajectory. The data in these five articles, in conjunction with

studies outside this Research Topic, should provide clues

for uncovering the logic behind the vast heterogeneity of

the human cerebral cortex, not only to reveal underlying

mechanisms in neurological or psychiatric disorders but

also to disclose the neurobiological elements conferring
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the uniqueness, multifaceted talents, and capacities of the

human brain.
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