6 research outputs found

    Development of a Nonionic Azobenzene Amphiphile for Remote Photocontrol of a Model Biomembrane

    No full text
    Benedini LA, Alejandra Sequeira M, Laura Fanani M, Maggio B, Dodero VI. Development of a Nonionic Azobenzene Amphiphile for Remote Photocontrol of a Model Biomembrane. JOURNAL OF PHYSICAL CHEMISTRY B. 2016;120(17):4053-4063.We report the synthesis and characterization of a simple nonionic azoamphiphile, C(12)OazoE(3)OH, which behaves as an optically controlled molecule alone and in a biomembrane environment. First, Langmuir monolayer and Brewster angle microscopy (BAM) experiments showed that pure C(12)OazoE(3)OH enriched in the (E) isomer was able to form solidlike mesophase even at low surface pressure associated with supramolecular organization of the azobenzene derivative at the interface. On the other hand, pure C(12)OazoE(3)OH enriched in the (Z) isomer formed a less solidlike monolayer due to the bent geometry around the azobenzene moiety. Second, C(12)OazoE(3)OH is well-mixed in a biological membrane model, Lipoid s75 (up to 20%mol), and photoisomerization among the lipids proceeded smoothly depending on light conditions. It is proposed that the cross-sectional area of the hydroxyl triethylenglycol head of C(12)OazoE(3)OH inhibits azobenzenes H-aggregation in the model membrane; thus, the tails conformation change due to photoisomerization is transferred efficiently to the lipid membrane. We showed that the lipid membrane effectively senses the azobenzene geometrical change photomodulating some properties, like compressibility modulus, transition temperature, and morphology. In addition, photomodulation proceeds with a color change from yellow to orange, providing the possibility to externally monitor the system. Finally, Gibbs monolayers showed that C(12)OazoE(3)OH is able to penetrate the highly packing biomembrane model; thus, C(12)OazoE(3)OH might be used as photoswitchable molecular probe in real systems

    Development of a Nonionic Azobenzene Amphiphile for Remote Photocontrol of a Model Biomembrane

    No full text
    We report the synthesis and characterization of a simple nonionic azoamphiphile, C<sub>12</sub>OazoE<sub>3</sub>OH, which behaves as an optically controlled molecule alone and in a biomembrane environment. First, Langmuir monolayer and Brewster angle microscopy (BAM) experiments showed that pure C<sub>12</sub>OazoE<sub>3</sub>OH enriched in the (<i>E</i>) isomer was able to form solidlike mesophase even at low surface pressure associated with supramolecular organization of the azobenzene derivative at the interface. On the other hand, pure C<sub>12</sub>OazoE<sub>3</sub>OH enriched in the (<i>Z</i>) isomer formed a less solidlike monolayer due to the bent geometry around the azobenzene moiety. Second, C<sub>12</sub>OazoE<sub>3</sub>OH is well-mixed in a biological membrane model, Lipoid s75 (up to 20%mol), and photoisomerization among the lipids proceeded smoothly depending on light conditions. It is proposed that the cross-sectional area of the hydroxyl triethylenglycol head of C<sub>12</sub>OazoE<sub>3</sub>OH inhibits azobenzenes H-aggregation in the model membrane; thus, the tails conformation change due to photoisomerization is transferred efficiently to the lipid membrane. We showed that the lipid membrane effectively senses the azobenzene geometrical change photomodulating some properties, like compressibility modulus, transition temperature, and morphology. In addition, photomodulation proceeds with a color change from yellow to orange, providing the possibility to externally monitor the system. Finally, Gibbs monolayers showed that C<sub>12</sub>OazoE<sub>3</sub>OH is able to penetrate the highly packing biomembrane model; thus, C<sub>12</sub>OazoE<sub>3</sub>OH might be used as photoswitchable molecular probe in real systems

    Phase Behavior of Ascorbyl Palmitate Coagels Loaded with Oligonucleotides as a New Carrier for Vaccine Adjuvants

    No full text
    In this work, the phase behavior variations of an ascorbyl palmitate (Asc16) system in aqueous solution were analyzed when immunologically active hydrophilic compounds (CpG and OVA) were introduced. This study was carried out through optical polarizing microscopy (OPM) and differential scanning calorimetry (DSC) at different temperatures and over a broad range of concentrations. The combination of both techniques allowed the determination of a complete phase diagram which was compared with those built for Asc16-water system and it was demonstrated that fixed concentrations of hydrophilic compounds (300 and 24 µg/g for CpG-ODN and OVA respectively) generate two lamellar liquid crystals, a cubic liquid crystal phase, and also other aggregates. However, no changes were observed in the phase diagram in terms of formation of new mesophases. The aqueous phase behavior was also studied as a function of surfactant and temperature. DSC and Fourier transform infrared spectroscopy (FT-IR) measurements show differences in the free water and mainly in the secondary hydration layer, which confirm that the studied compounds are situated in the aqueous domain. The construction and analysis of Asc16 phase diagrams with a fixed concentration of CpG-ODN/OVA allows the comprehension of Asc16 phase behavior and could be easily adapted to other concentrations. Moreover, these findings could be extrapolated to other hydrophilic substances in aqueous solution introduced in liquid crystal phases since they follow a similar behavior as those reported in the literature.Fil: Ullio Gamboa, Gabriela Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; ArgentinaFil: Benedini, Luciano Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Schulz, Pablo Carlos. Universidad Nacional del Sur. Departamento de Química; ArgentinaFil: Allemandi, Daniel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; Argentin
    corecore