10,924 research outputs found
Geocoder: An Efficient Backscatter Map Constructor
The acoustic backscatter acquired by multibeam and sidescan sonars carries important information about the seafloor morphology and physical properties, providing valuable data to aid the difficult task of seafloor characterization, and important auxiliary information for a bathymetric survey. One necessary step towards this characterization is the assemblage of more consistent and more accurate mosaics of acoustic backscatter. For that, it is necessary to radiometrically correct the backscatter intensities registered by these sonars, to geometrically correct and position each acoustic sample in a projection coordinate system and to interpolate properly the intensity values into a final backscatter map. Geocoder is a software tool that implements the ideas discussed above. Initially, the original backscatter time series registered by the sonar is corrected for angle varying gains, for beam pattern and filtered for speckle removal. All samples of the time series are preserved during all the operations, ensuring that the full data resolution is used for the final mosaicking. The time serie s is then slant-range corrected based on a bathymetric model, in the case of sidescan, or based on beam bathymetry, in the case of the multibeam. Subsequently, each backscatter sample of the series is geocoded in a projected coordinate system in accordance to an interpolation scheme that resembles the acquisition geometry. An anti-aliasing algorithm is applied in parallel to the mosaicking procedure, which allows the assemblage of mosaics at any required resolution. Overlap among parallel lines is resolved by a priority table based on the distance of each sample from the ship track; a blending algorithm is applied to minimize the seams between overlapping lines. The final mosaic exhibits low noise, few artifacts, reduced seams between parallel acquisition lines and reduced clutter in the near-nadir region, while still preserving regional data continuity and local seafloor features
Experiments for multibeam Backscatter Adjustments on the NOAA Ship FAIRWEATHER
A series of experiments were conducted to adjust and normalize the acoustic backscatter acquired by Reson 8111 and 8160 systems. The dependency of the backscatter on the receiver gain, transmit power, pulse width and acquisition mode was analyzed. Empirical beam patterns are calculated as the difference between the backscatter measured by the sonars and the expected backscatter. Expected acoustic backscatter is estimated based on a mathematical model
Clustering Acoustic Backscatter in the Angular Response Space
Backscatter mosaicking is a necessary step in the analysis and interpretation of sidescan and multibeam sonar records. However, due to limitations intrinsic to the mosaicking technique, backscatter mosaics are restricted in their capacity to unambiguously discriminate seafloor properties. A more adequate technique to characterize the seafloor is the analysis of backscatter angular responses, since those responses are intrinsic properties of the seafloor. This technique sometimes lacks spatial resolution, however, as the analysis is limited to the swath width of the sonar. In this paper, we propose an approach to combine mosaicking and angular response analysis techniques in an attempt to take advantage of both the spatial resolution of the mosaic, and the angular resolution derived from the angular response analysis. In order to test these ideas, we used acoustic backscatter acquired by a Reson 8101 (240kHz) multibeam sonar during normal survey operations conducted on the NOAA Ship FAIRWEATHER around Cape Decision, Alaska in spring 2005. First, we defined parameters that uniquely described the angular responses, and treated those parameters as a feature vector in a multidimensional space. The parameters were then clustered with a simple unsupervised clustering algorithm. The result of the clustering analysis defined areas on the seafloor which had similar angular responses, which we called themes. We then used these themes to develop more robust indicators of angular response from their coverage areas, which were finally used as Angle Varying Gain correction tables to assemble an enhanced mosaic
Thermal transport in nanocrystalline graphene investigated by approach-to-equilibrium molecular dynamics simulations
Approach-to-equilibrium molecular dynamics simulations have been used to
study thermal transport in nanocrystalline graphene sheets. Nanostructured
graphene has been created using an iterative process for grain growth from
initial seeds with random crystallographic orientations. The resulting cells
have been characterized by the grain size distribution based on the radius of
gyration, by the number of atoms in each grain and by the number of atoms in
the grain boundary. Introduction of nanograins with a radius of gyration of 1
nm has led to a significant reduction in the thermal conductivity to 3% of the
value in single crystalline graphene. Analysis of the vibrational density of
states has revealed a general reduction of the vibrational intensities and
broadening of the peaks when nanograins are introduced which can be attributed
to phonon scattering in the boundary layer. The thermal conductivity has been
evaluated as a function of the grain size with increasing size up to 14 nm and
it has been shown to follow an inverse rational function. The grain size
dependent thermal conductivity could be approximated well by a function where
transport is described by a connection in series of conducting elements and
resistances (at boundaries).Comment: 9 pages, 9 figure
A Kolmogorov-Smirnov test for the molecular clock on Bayesian ensembles of phylogenies
Divergence date estimates are central to understand evolutionary processes
and depend, in the case of molecular phylogenies, on tests of molecular clocks.
Here we propose two non-parametric tests of strict and relaxed molecular clocks
built upon a framework that uses the empirical cumulative distribution (ECD) of
branch lengths obtained from an ensemble of Bayesian trees and well known
non-parametric (one-sample and two-sample) Kolmogorov-Smirnov (KS)
goodness-of-fit test. In the strict clock case, the method consists in using
the one-sample Kolmogorov-Smirnov (KS) test to directly test if the phylogeny
is clock-like, in other words, if it follows a Poisson law. The ECD is computed
from the discretized branch lengths and the parameter of the expected
Poisson distribution is calculated as the average branch length over the
ensemble of trees. To compensate for the auto-correlation in the ensemble of
trees and pseudo-replication we take advantage of thinning and effective sample
size, two features provided by Bayesian inference MCMC samplers. Finally, it is
observed that tree topologies with very long or very short branches lead to
Poisson mixtures and in this case we propose the use of the two-sample KS test
with samples from two continuous branch length distributions, one obtained from
an ensemble of clock-constrained trees and the other from an ensemble of
unconstrained trees. Moreover, in this second form the test can also be applied
to test for relaxed clock models. The use of a statistically equivalent
ensemble of phylogenies to obtain the branch lengths ECD, instead of one
consensus tree, yields considerable reduction of the effects of small sample
size and provides again of power.Comment: 14 pages, 9 figures, 8 tables. Minor revision, additin of a new
example and new title. Software:
https://github.com/FernandoMarcon/PKS_Test.gi
- …