34 research outputs found

    Angiotensin receptor/Neprilysin inhibitor effects in CRTd non-responders: From epigenetic to clinical beside

    Get PDF
    We evaluated whether Angiotensin receptor/Neprilysin inhibitors (ARNI) reduce heart failure (HF) hospitalizations and deaths in cardiac resynchronization therapy with defibrillator (CRTd) non-responders patients at 12 months of follow-up, modulating microRNAs (miRs) implied in adverse cardiac remodeling

    Glycated ACE2 reduces anti-remodeling effects of renin-angiotensin system inhibition in human diabetic hearts

    Get PDF
    High glycated-hemoglobin (HbA1c) levels correlated with an elevated risk of adverse cardiovascular outcomes despite renin-angiotensin system (RAS) inhibition in type-2 diabetic (T2DM) patients with reduced ejection fraction. Using the routine biopsies of non-T2DM heart transplanted (HTX) in T2DM recipients, we evaluated whether the diabetic milieu modulates glycosylated ACE2 (GlycACE2) levels in cardiomyocytes, known to be affected by non-enzymatic glycosylation, and the relationship with glycemic control

    miR-21 in Human Cardiomyopathies

    No full text
    miR-21 is a 22-nucleotide long microRNA that matches target mRNAs in a complementary base pairing fashion and regulates gene expression by repressing or degrading target mRNAs. miR-21 is involved in various cardiomyopathies, including heart failure, dilated cardiomyopathy, myocardial infarction, and diabetic cardiomyopathy. Expression levels of miR-21 notably change in both heart and circulation and provide cardiac protection after heart injury. In the meantime, miR-21 also tightly links to cardiac dysfunctions such as cardiac hypertrophy and fibrosis. This review focuses on the miR-21 expression pattern and its functions in diseased-heart and further discusses the feasibility of miR-21 as a biomarker and therapeutic target in cardiomyopathies

    Sarcopenia and Cognitive Function: Role of Myokines in Muscle Brain Cross-Talk

    No full text
    Sarcopenia is a geriatric syndrome characterized by the progressive degeneration of muscle mass and function, and it is associated with severe complications, which are falls, functional decline, frailty, and mortality. Sarcopenia is associated with cognitive impairment, defined as a decline in one or more cognitive domains as language, memory, reasoning, social cognition, planning, making decisions, and solving problems. Although the exact mechanism relating to sarcopenia and cognitive function has not yet been defined, several studies have shown that skeletal muscle produces and secrete molecules, called myokines, that regulate brain functions, including mood, learning, locomotor activity, and neuronal injury protection, showing the existence of muscle-brain cross-talk. Moreover, studies conducted on physical exercise supported the existence of muscle-brain cross-talk, showing how physical activity, changing myokines' circulating levels, exerts beneficial effects on the brain. The review mainly focuses on describing the role of myokines on brain function and their involvement in cognitive impairment in sarcopenia

    ARHGEF3 controls HDACi-induced differentiation via RhoA-dependent pathways in acute myeloid leukemias

    No full text
    <div><p>Altered expression and activity of histone deacetylases (HDACs) have been correlated with tumorigenesis. Inhibitors of HDACs (HDACi) induce acetylation of histone and non-histone proteins affecting gene expression, cell cycle progression, cell migration, terminal differentiation and cell death. Here, we analyzed the regulation of ARHGEF3, a RhoA-specific guanine nucleotide exchange factor, by the HDACi MS275 (entinostat). MS275 is a well-known benzamide-based HDACi, which induces differentiation of the monoblastic-like human histiocytic lymphoma cell line U937 to monocytes/macrophages. Incubation of U937 cells with MS275 resulted in an up regulation of ARHGEF3, followed by a significant enhancement of the marker of macrophage differentiation CD68. ARHGEF3 protein is primarily nuclear, but MS275 treatment rapidly induced its translocation into the cytoplasm. ARHGEF3 cytoplasmic localization is associated with activation of the RhoA/Rho-associated Kinase (ROCK) pathway. In addition to cytoskeletal rearrangements orchestrated by RhoA, we showed that ARHGEF3/RhoA-dependent signals involve activation of SAPK/JNK and then Elk1 transcription factor. Importantly, MS275-induced CD68 expression was blocked by exposure of U937 cells to exoenzyme C3 transferase and Y27632, inhibitors of Rho and ROCK respectively. Moreover, ARHGEF3 silencing prevented RhoA activation leading to a reduction in SAPK/JNK phosphorylation, Elk1 activation and CD68 expression, suggesting a crucial role for ARHGEF3 in myeloid differentiation. Taken together, our results demonstrate that ARHGEF3 modulates acute myeloid leukemia differentiation through activation of RhoA and pathways directly controlled by small GTPase family proteins. The finding that GEF protein modulation by HDAC inhibition impacts on cell differentiation may be important for understanding the antitumor mechanism(s) by which HDACi treatment stimulates differentiation in cancer.</p></div

    Potential Role of Lisinopril in Reducing Atherosclerotic Risk: Evidence of an Antioxidant Effect in Human Cardiomyocytes Cell Line

    No full text
    The cellular mechanisms involved in myocardial ischemia/reperfusion injury (I/R) pathogenesis are complex but attributable to reactive oxygen species (ROS) production. ROS produced by coronary endothelial cells, blood cells (e.g., leukocytes and platelets), and cardiac myocytes have the potential to damage vascular cells directly and cardiac myocytes, initiating mechanisms that induce apoptosis, inflammation, necrosis, and fibrosis of myocardial cells. In addition to reducing blood pressure, lisinopril, a new non-sulfhydryl angiotensin-converting enzyme (ACE) inhibitor, increases the antioxidant defense in animals and humans. Recently, it has been shown that lisinopril can attenuate renal oxidative injury in the l-NAME-induced hypertensive rat and cause an impressive improvement in the antioxidant defense system of Wistar rats treated with doxorubicin. The potential effect of lisinopril on oxidative damage and fibrosis in human cardiomyocytes has not been previously investigated. Thus, the present study aims to investigate the effect of different doses of lisinopril on oxidative stress and fibrotic mediators in AC16 human cardiomyocytes, along with a 7-day presence in the culture medium. The results revealed that AC16 human cardiomyocytes exposed to lisinopril treatment significantly showed an upregulation of proteins involved in protecting against oxidative stress, such as catalase, SOD2, and thioredoxin, and a reduction of osteopontin and Galectin-3, critical proteins involved in cardiac fibrosis. Moreover, lisinopril treatment induced an increment in Sirtuin 1 and Sirtuin 6 protein expression. These findings demonstrated that, in AC16 human cardiomyocytes, lisinopril could protect against oxidative stress and fibrosis via the activation of Sirtuin 1 and Sirtuin 6 pathways
    corecore